iAIML: um mecanismo para o tratamento de intenção em Chatterbots
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000014dfq |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/2095 |
Resumo: | O trabalho de pesquisa aqui apresentado teve como objetivo principal melhorar o desempenho de chatterbots em diálogos livres com usuários. Chatterbots são sistemas computacionais que se propõem a conversar em linguagem natural como se fossem humanos. O primeiro desses sistemas foi ELIZA, desenvolvido em 1965 por Weizenbaum. Desde então, inúmeros sistemas foram produzidos com esse mesmo objetivo. Porém, uma série de problemas ainda continuam em aberto, dentre os quais, o tratamento de intenção, questão central na interpretação de diálogos naturais. Nesse sentido, desenvolvemos um mecanismo para tratamento de intenção para ser incorporado a chatterbots baseados em AIML. Adotamos como base conceitual para o trabalho a Teoria da Análise da Conversação (TAC), por considerar a intenção em pares adjacentes, e não apenas na sentença do falante, como a Teoria dos Atos de Fala. Com base na TAC e em experimentos realizados, selecionamos um conjunto de intenções, que foram utilizadas na criação de regras em AIML que utilizam informações de intencionalidade para interpretar e gerar sentenças em diálogos naturais. A solução final foi testada em uma série de experimentos, e demonstrou ser capaz de corrigir alguns problemas presentes em diálogos com chatterbots. Por exemplo, o sistema baseado em AIML padrão tratou 40% das sentenças dos usuários como sendo desconhecidas, enquanto o nosso sistema classificou apenas 3,5% das sentenças como totalmente desconhecidas. Além disso, o sistema foi capaz de manter a estrutura global dos diálogos, criticando turnos de abertura ou fechamento que foram ditos no desenvolvimento, ou turnos de desenvolvimento ditos na abertura ou fechamento. Por fim, implementamos três aplicações com chatterbots, o que demonstra que a solução adotada favorece o reuso de categorias em bases AIML, processo extremamente custoso do ponto de vista de engenharia de software com os sistemas atuais |
id |
UFPE_1356fc6f9a0ca4ad54d4595360c6ee5c |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/2095 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Menezes Marques das Neves, Andréde Almeida Barros, Flávia 2014-06-12T15:54:30Z2014-06-12T15:54:30Z2005Menezes Marques das Neves, André; de Almeida Barros, Flávia. iAIML: um mecanismo para o tratamento de intenção em Chatterbots. 2005. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2005.https://repositorio.ufpe.br/handle/123456789/2095ark:/64986/0013000014dfqO trabalho de pesquisa aqui apresentado teve como objetivo principal melhorar o desempenho de chatterbots em diálogos livres com usuários. Chatterbots são sistemas computacionais que se propõem a conversar em linguagem natural como se fossem humanos. O primeiro desses sistemas foi ELIZA, desenvolvido em 1965 por Weizenbaum. Desde então, inúmeros sistemas foram produzidos com esse mesmo objetivo. Porém, uma série de problemas ainda continuam em aberto, dentre os quais, o tratamento de intenção, questão central na interpretação de diálogos naturais. Nesse sentido, desenvolvemos um mecanismo para tratamento de intenção para ser incorporado a chatterbots baseados em AIML. Adotamos como base conceitual para o trabalho a Teoria da Análise da Conversação (TAC), por considerar a intenção em pares adjacentes, e não apenas na sentença do falante, como a Teoria dos Atos de Fala. Com base na TAC e em experimentos realizados, selecionamos um conjunto de intenções, que foram utilizadas na criação de regras em AIML que utilizam informações de intencionalidade para interpretar e gerar sentenças em diálogos naturais. A solução final foi testada em uma série de experimentos, e demonstrou ser capaz de corrigir alguns problemas presentes em diálogos com chatterbots. Por exemplo, o sistema baseado em AIML padrão tratou 40% das sentenças dos usuários como sendo desconhecidas, enquanto o nosso sistema classificou apenas 3,5% das sentenças como totalmente desconhecidas. Além disso, o sistema foi capaz de manter a estrutura global dos diálogos, criticando turnos de abertura ou fechamento que foram ditos no desenvolvimento, ou turnos de desenvolvimento ditos na abertura ou fechamento. Por fim, implementamos três aplicações com chatterbots, o que demonstra que a solução adotada favorece o reuso de categorias em bases AIML, processo extremamente custoso do ponto de vista de engenharia de software com os sistemas atuaisporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência artificialChatterbotAimliAIML: um mecanismo para o tratamento de intenção em Chatterbotsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo7155_1.pdf.jpgarquivo7155_1.pdf.jpgGenerated Thumbnailimage/jpeg1259https://repositorio.ufpe.br/bitstream/123456789/2095/4/arquivo7155_1.pdf.jpg377ee6db96b0196a3c4d90e15c3b3abdMD54ORIGINALarquivo7155_1.pdfapplication/pdf666963https://repositorio.ufpe.br/bitstream/123456789/2095/1/arquivo7155_1.pdf56eeb6eb903215d0a8b285686ffe780aMD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/2095/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo7155_1.pdf.txtarquivo7155_1.pdf.txtExtracted texttext/plain197933https://repositorio.ufpe.br/bitstream/123456789/2095/3/arquivo7155_1.pdf.txt9be2b1ce2faec501fee6a50ce9293c4dMD53123456789/20952019-10-25 04:14:46.708oai:repositorio.ufpe.br:123456789/2095Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:14:46Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
iAIML: um mecanismo para o tratamento de intenção em Chatterbots |
title |
iAIML: um mecanismo para o tratamento de intenção em Chatterbots |
spellingShingle |
iAIML: um mecanismo para o tratamento de intenção em Chatterbots Menezes Marques das Neves, André Inteligência artificial Chatterbot Aiml |
title_short |
iAIML: um mecanismo para o tratamento de intenção em Chatterbots |
title_full |
iAIML: um mecanismo para o tratamento de intenção em Chatterbots |
title_fullStr |
iAIML: um mecanismo para o tratamento de intenção em Chatterbots |
title_full_unstemmed |
iAIML: um mecanismo para o tratamento de intenção em Chatterbots |
title_sort |
iAIML: um mecanismo para o tratamento de intenção em Chatterbots |
author |
Menezes Marques das Neves, André |
author_facet |
Menezes Marques das Neves, André |
author_role |
author |
dc.contributor.author.fl_str_mv |
Menezes Marques das Neves, André |
dc.contributor.advisor1.fl_str_mv |
de Almeida Barros, Flávia |
contributor_str_mv |
de Almeida Barros, Flávia |
dc.subject.por.fl_str_mv |
Inteligência artificial Chatterbot Aiml |
topic |
Inteligência artificial Chatterbot Aiml |
description |
O trabalho de pesquisa aqui apresentado teve como objetivo principal melhorar o desempenho de chatterbots em diálogos livres com usuários. Chatterbots são sistemas computacionais que se propõem a conversar em linguagem natural como se fossem humanos. O primeiro desses sistemas foi ELIZA, desenvolvido em 1965 por Weizenbaum. Desde então, inúmeros sistemas foram produzidos com esse mesmo objetivo. Porém, uma série de problemas ainda continuam em aberto, dentre os quais, o tratamento de intenção, questão central na interpretação de diálogos naturais. Nesse sentido, desenvolvemos um mecanismo para tratamento de intenção para ser incorporado a chatterbots baseados em AIML. Adotamos como base conceitual para o trabalho a Teoria da Análise da Conversação (TAC), por considerar a intenção em pares adjacentes, e não apenas na sentença do falante, como a Teoria dos Atos de Fala. Com base na TAC e em experimentos realizados, selecionamos um conjunto de intenções, que foram utilizadas na criação de regras em AIML que utilizam informações de intencionalidade para interpretar e gerar sentenças em diálogos naturais. A solução final foi testada em uma série de experimentos, e demonstrou ser capaz de corrigir alguns problemas presentes em diálogos com chatterbots. Por exemplo, o sistema baseado em AIML padrão tratou 40% das sentenças dos usuários como sendo desconhecidas, enquanto o nosso sistema classificou apenas 3,5% das sentenças como totalmente desconhecidas. Além disso, o sistema foi capaz de manter a estrutura global dos diálogos, criticando turnos de abertura ou fechamento que foram ditos no desenvolvimento, ou turnos de desenvolvimento ditos na abertura ou fechamento. Por fim, implementamos três aplicações com chatterbots, o que demonstra que a solução adotada favorece o reuso de categorias em bases AIML, processo extremamente custoso do ponto de vista de engenharia de software com os sistemas atuais |
publishDate |
2005 |
dc.date.issued.fl_str_mv |
2005 |
dc.date.accessioned.fl_str_mv |
2014-06-12T15:54:30Z |
dc.date.available.fl_str_mv |
2014-06-12T15:54:30Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Menezes Marques das Neves, André; de Almeida Barros, Flávia. iAIML: um mecanismo para o tratamento de intenção em Chatterbots. 2005. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2005. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/2095 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000014dfq |
identifier_str_mv |
Menezes Marques das Neves, André; de Almeida Barros, Flávia. iAIML: um mecanismo para o tratamento de intenção em Chatterbots. 2005. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2005. ark:/64986/0013000014dfq |
url |
https://repositorio.ufpe.br/handle/123456789/2095 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/2095/4/arquivo7155_1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/2095/1/arquivo7155_1.pdf https://repositorio.ufpe.br/bitstream/123456789/2095/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/2095/3/arquivo7155_1.pdf.txt |
bitstream.checksum.fl_str_mv |
377ee6db96b0196a3c4d90e15c3b3abd 56eeb6eb903215d0a8b285686ffe780a 8a4605be74aa9ea9d79846c1fba20a33 9be2b1ce2faec501fee6a50ce9293c4d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815173000170831872 |