Segmentação e classificação de padrões visuais baseadas em campos receptivos e inibitórios

Detalhes bibliográficos
Autor(a) principal: José Torres Fernandes, Bruno
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000009bgd
Texto Completo: https://repositorio.ufpe.br/handle/123456789/1778
Resumo: O sistema visual humano é um dos mecanismos mais fascinantes da natureza. É através dele que o ser humano é capaz de realizar as suas tarefas mais básicas, como assistir televisão, até as mais complexas, como realizar análises através de microscópios em laboratórios. Por conseguinte, neste trabalho são propostos dois modelos baseados no comportamento do sistema visual humano. O primeiro é um modelo de segmentação supervisionada baseado nos conceitos de campos receptivos, chamado Segmentation and Classification Based on Receptive Fields (SCRF). O outro é uma nova rede neural, chamada I-PyraNet. A I-PyraNet é uma implementação híbrida da PyraNet e dos conceitos de campos inibitórios. Então, no intuito de validar os modelos aqui propostos, nesta dissertação é apresentada uma revisão do estado-da-arte, descrevendo-se desde o funcionamento do sistema visual humano até as várias etapas existentes numa tarefa de processamento de imagens. Por fim, os modelos propostos foram aplicados em duas tarefas de reconhecimento. O modelo SCRF e a I-PyraNet foram aplicados juntos num problema de detecção de floresta em imagens de satélite. Enquanto a I-PyraNet foi aplicada sobre um problema de detecção de facos. Ambos alcançaram bons resultados quando comparados aos outros modelos aqui apresentados
id UFPE_15e9f5d27cc490d4132dbc2cefc5f23f
oai_identifier_str oai:repositorio.ufpe.br:123456789/1778
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling José Torres Fernandes, BrunoDarmiton da Cunha Cavalcanti, George 2014-06-12T15:52:22Z2014-06-12T15:52:22Z2009-01-31José Torres Fernandes, Bruno; Darmiton da Cunha Cavalcanti, George. Segmentação e classificação de padrões visuais baseadas em campos receptivos e inibitórios. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009.https://repositorio.ufpe.br/handle/123456789/1778ark:/64986/0013000009bgdO sistema visual humano é um dos mecanismos mais fascinantes da natureza. É através dele que o ser humano é capaz de realizar as suas tarefas mais básicas, como assistir televisão, até as mais complexas, como realizar análises através de microscópios em laboratórios. Por conseguinte, neste trabalho são propostos dois modelos baseados no comportamento do sistema visual humano. O primeiro é um modelo de segmentação supervisionada baseado nos conceitos de campos receptivos, chamado Segmentation and Classification Based on Receptive Fields (SCRF). O outro é uma nova rede neural, chamada I-PyraNet. A I-PyraNet é uma implementação híbrida da PyraNet e dos conceitos de campos inibitórios. Então, no intuito de validar os modelos aqui propostos, nesta dissertação é apresentada uma revisão do estado-da-arte, descrevendo-se desde o funcionamento do sistema visual humano até as várias etapas existentes numa tarefa de processamento de imagens. Por fim, os modelos propostos foram aplicados em duas tarefas de reconhecimento. O modelo SCRF e a I-PyraNet foram aplicados juntos num problema de detecção de floresta em imagens de satélite. Enquanto a I-PyraNet foi aplicada sobre um problema de detecção de facos. Ambos alcançaram bons resultados quando comparados aos outros modelos aqui apresentadosConselho Nacional de Desenvolvimento Científico e TecnológicoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessredes neuraiscampos receptivos e inibitóriosdetecção de facesclassificação de imagensSegmentação de imagensSegmentação e classificação de padrões visuais baseadas em campos receptivos e inibitóriosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILbjtf.pdf.jpgbjtf.pdf.jpgGenerated Thumbnailimage/jpeg1247https://repositorio.ufpe.br/bitstream/123456789/1778/4/bjtf.pdf.jpg41c93bb400bc5594d8bb28ff071186d0MD54LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/1778/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALbjtf.pdfbjtf.pdfapplication/pdf3360101https://repositorio.ufpe.br/bitstream/123456789/1778/2/bjtf.pdf26c78e69de5a1012a14a4c991b9fb723MD52TEXTbjtf.pdf.txtbjtf.pdf.txtExtracted texttext/plain147900https://repositorio.ufpe.br/bitstream/123456789/1778/3/bjtf.pdf.txt6bc11d62e7bc1ae22f4f1e6a1cbcbce3MD53123456789/17782019-10-25 11:30:08.663oai:repositorio.ufpe.br:123456789/1778Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T14:30:08Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Segmentação e classificação de padrões visuais baseadas em campos receptivos e inibitórios
title Segmentação e classificação de padrões visuais baseadas em campos receptivos e inibitórios
spellingShingle Segmentação e classificação de padrões visuais baseadas em campos receptivos e inibitórios
José Torres Fernandes, Bruno
redes neurais
campos receptivos e inibitórios
detecção de faces
classificação de imagens
Segmentação de imagens
title_short Segmentação e classificação de padrões visuais baseadas em campos receptivos e inibitórios
title_full Segmentação e classificação de padrões visuais baseadas em campos receptivos e inibitórios
title_fullStr Segmentação e classificação de padrões visuais baseadas em campos receptivos e inibitórios
title_full_unstemmed Segmentação e classificação de padrões visuais baseadas em campos receptivos e inibitórios
title_sort Segmentação e classificação de padrões visuais baseadas em campos receptivos e inibitórios
author José Torres Fernandes, Bruno
author_facet José Torres Fernandes, Bruno
author_role author
dc.contributor.author.fl_str_mv José Torres Fernandes, Bruno
dc.contributor.advisor1.fl_str_mv Darmiton da Cunha Cavalcanti, George
contributor_str_mv Darmiton da Cunha Cavalcanti, George
dc.subject.por.fl_str_mv redes neurais
campos receptivos e inibitórios
detecção de faces
classificação de imagens
Segmentação de imagens
topic redes neurais
campos receptivos e inibitórios
detecção de faces
classificação de imagens
Segmentação de imagens
description O sistema visual humano é um dos mecanismos mais fascinantes da natureza. É através dele que o ser humano é capaz de realizar as suas tarefas mais básicas, como assistir televisão, até as mais complexas, como realizar análises através de microscópios em laboratórios. Por conseguinte, neste trabalho são propostos dois modelos baseados no comportamento do sistema visual humano. O primeiro é um modelo de segmentação supervisionada baseado nos conceitos de campos receptivos, chamado Segmentation and Classification Based on Receptive Fields (SCRF). O outro é uma nova rede neural, chamada I-PyraNet. A I-PyraNet é uma implementação híbrida da PyraNet e dos conceitos de campos inibitórios. Então, no intuito de validar os modelos aqui propostos, nesta dissertação é apresentada uma revisão do estado-da-arte, descrevendo-se desde o funcionamento do sistema visual humano até as várias etapas existentes numa tarefa de processamento de imagens. Por fim, os modelos propostos foram aplicados em duas tarefas de reconhecimento. O modelo SCRF e a I-PyraNet foram aplicados juntos num problema de detecção de floresta em imagens de satélite. Enquanto a I-PyraNet foi aplicada sobre um problema de detecção de facos. Ambos alcançaram bons resultados quando comparados aos outros modelos aqui apresentados
publishDate 2009
dc.date.issued.fl_str_mv 2009-01-31
dc.date.accessioned.fl_str_mv 2014-06-12T15:52:22Z
dc.date.available.fl_str_mv 2014-06-12T15:52:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv José Torres Fernandes, Bruno; Darmiton da Cunha Cavalcanti, George. Segmentação e classificação de padrões visuais baseadas em campos receptivos e inibitórios. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/1778
dc.identifier.dark.fl_str_mv ark:/64986/0013000009bgd
identifier_str_mv José Torres Fernandes, Bruno; Darmiton da Cunha Cavalcanti, George. Segmentação e classificação de padrões visuais baseadas em campos receptivos e inibitórios. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009.
ark:/64986/0013000009bgd
url https://repositorio.ufpe.br/handle/123456789/1778
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/1778/4/bjtf.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/1778/1/license.txt
https://repositorio.ufpe.br/bitstream/123456789/1778/2/bjtf.pdf
https://repositorio.ufpe.br/bitstream/123456789/1778/3/bjtf.pdf.txt
bitstream.checksum.fl_str_mv 41c93bb400bc5594d8bb28ff071186d0
8a4605be74aa9ea9d79846c1fba20a33
26c78e69de5a1012a14a4c991b9fb723
6bc11d62e7bc1ae22f4f1e6a1cbcbce3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172767917539328