Técnicas de redução de instâncias: ATISA e SSMA2

Detalhes bibliográficos
Autor(a) principal: Lima Pereira, Cesar
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000000ffk
Texto Completo: https://repositorio.ufpe.br/handle/123456789/2229
Resumo: Algoritmos de aprendizagem baseados em instâncias geralmente fazem uso de grandes conjuntos de treinamento. Esses algoritmos podem necessitar de razoável espaço de armazenamento para manter esses conjuntos, ou mesmo sofrer com elevado custo computacional para a realização da aprendizagem, ou durante generalizações. Um processo de seleção de instâncias específicas para uso na aprendizagem pode influenciar fortemente o desempenho dos algoritmos baseados em instâncias. Eles podem ser melhorados em quesitos como: requisitos de armazenamento, tempo de execução e também em poder de classificação. Uma variedade de técnicas da literatura atuam com a finalidade da redução de instâncias em um conjunto de treinamento. Duas novas técnicas serão introduzidas nesta dissertação. A primeira delas, ATISA (Adaptive Threshold-based Instance Selection Algorithm), mantém instâncias com base em um critério que usa a distância de cada instância ao seu inimigo mais próximo como um limiar. Essa característica prioriza instâncias próximas às fronteiras de decisão, que são mais determinantes no processo de classificação. O ATISA é apresentado em três diferentes algoritmos, cada um com abordagens distintas. A segunda técnica proposta é uma adaptação do SSMA (Steady- State Memetic Algorithm), já utilizado para a seleção de instâncias, para a síntese de protótipos. Aqui chamado de SSMA2, ele é um algoritmo evolucionário que cria protótipos que representam instâncias e que podem não estar contidos no conjunto original de treinamento. Durante o processo de evolução, ele realiza um passo de busca local para refinar soluções, vem daí a denominação memético. Ambos, ATISA e SSMA2, apresentaram-se como alternativas dentre as técnicas de redução de instâncias existentes, de acordo com os experimentos realizados
id UFPE_1a90d8be8cc88ed915a4b857ac711239
oai_identifier_str oai:repositorio.ufpe.br:123456789/2229
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling Lima Pereira, CesarDarmiton da Cunha Cavalcanti, George 2014-06-12T15:55:36Z2014-06-12T15:55:36Z2010-01-31Lima Pereira, Cesar; Darmiton da Cunha Cavalcanti, George. Técnicas de redução de instâncias: ATISA e SSMA2. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010.https://repositorio.ufpe.br/handle/123456789/2229ark:/64986/0013000000ffkAlgoritmos de aprendizagem baseados em instâncias geralmente fazem uso de grandes conjuntos de treinamento. Esses algoritmos podem necessitar de razoável espaço de armazenamento para manter esses conjuntos, ou mesmo sofrer com elevado custo computacional para a realização da aprendizagem, ou durante generalizações. Um processo de seleção de instâncias específicas para uso na aprendizagem pode influenciar fortemente o desempenho dos algoritmos baseados em instâncias. Eles podem ser melhorados em quesitos como: requisitos de armazenamento, tempo de execução e também em poder de classificação. Uma variedade de técnicas da literatura atuam com a finalidade da redução de instâncias em um conjunto de treinamento. Duas novas técnicas serão introduzidas nesta dissertação. A primeira delas, ATISA (Adaptive Threshold-based Instance Selection Algorithm), mantém instâncias com base em um critério que usa a distância de cada instância ao seu inimigo mais próximo como um limiar. Essa característica prioriza instâncias próximas às fronteiras de decisão, que são mais determinantes no processo de classificação. O ATISA é apresentado em três diferentes algoritmos, cada um com abordagens distintas. A segunda técnica proposta é uma adaptação do SSMA (Steady- State Memetic Algorithm), já utilizado para a seleção de instâncias, para a síntese de protótipos. Aqui chamado de SSMA2, ele é um algoritmo evolucionário que cria protótipos que representam instâncias e que podem não estar contidos no conjunto original de treinamento. Durante o processo de evolução, ele realiza um passo de busca local para refinar soluções, vem daí a denominação memético. Ambos, ATISA e SSMA2, apresentaram-se como alternativas dentre as técnicas de redução de instâncias existentes, de acordo com os experimentos realizadosFundação de Amparo à Ciência e Tecnologia do Estado de PernambucoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAprendizagem baseada em instânciasRegra do vizinho mais próximoRedução de instânciasSeleção de protótiposTécnicas de redução de instâncias: ATISA e SSMA2info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo2273_1.pdf.jpgarquivo2273_1.pdf.jpgGenerated Thumbnailimage/jpeg1225https://repositorio.ufpe.br/bitstream/123456789/2229/4/arquivo2273_1.pdf.jpg19dd21311f13362580fa4283184d8c3cMD54ORIGINALarquivo2273_1.pdfapplication/pdf1625266https://repositorio.ufpe.br/bitstream/123456789/2229/1/arquivo2273_1.pdf0eb4bb8ecfe790f72029c6e54c3438f6MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/2229/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo2273_1.pdf.txtarquivo2273_1.pdf.txtExtracted texttext/plain242352https://repositorio.ufpe.br/bitstream/123456789/2229/3/arquivo2273_1.pdf.txt37e755dafe370b764b5a56123525f2e3MD53123456789/22292019-10-25 12:38:37.014oai:repositorio.ufpe.br:123456789/2229Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T15:38:37Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Técnicas de redução de instâncias: ATISA e SSMA2
title Técnicas de redução de instâncias: ATISA e SSMA2
spellingShingle Técnicas de redução de instâncias: ATISA e SSMA2
Lima Pereira, Cesar
Aprendizagem baseada em instâncias
Regra do vizinho mais próximo
Redução de instâncias
Seleção de protótipos
title_short Técnicas de redução de instâncias: ATISA e SSMA2
title_full Técnicas de redução de instâncias: ATISA e SSMA2
title_fullStr Técnicas de redução de instâncias: ATISA e SSMA2
title_full_unstemmed Técnicas de redução de instâncias: ATISA e SSMA2
title_sort Técnicas de redução de instâncias: ATISA e SSMA2
author Lima Pereira, Cesar
author_facet Lima Pereira, Cesar
author_role author
dc.contributor.author.fl_str_mv Lima Pereira, Cesar
dc.contributor.advisor1.fl_str_mv Darmiton da Cunha Cavalcanti, George
contributor_str_mv Darmiton da Cunha Cavalcanti, George
dc.subject.por.fl_str_mv Aprendizagem baseada em instâncias
Regra do vizinho mais próximo
Redução de instâncias
Seleção de protótipos
topic Aprendizagem baseada em instâncias
Regra do vizinho mais próximo
Redução de instâncias
Seleção de protótipos
description Algoritmos de aprendizagem baseados em instâncias geralmente fazem uso de grandes conjuntos de treinamento. Esses algoritmos podem necessitar de razoável espaço de armazenamento para manter esses conjuntos, ou mesmo sofrer com elevado custo computacional para a realização da aprendizagem, ou durante generalizações. Um processo de seleção de instâncias específicas para uso na aprendizagem pode influenciar fortemente o desempenho dos algoritmos baseados em instâncias. Eles podem ser melhorados em quesitos como: requisitos de armazenamento, tempo de execução e também em poder de classificação. Uma variedade de técnicas da literatura atuam com a finalidade da redução de instâncias em um conjunto de treinamento. Duas novas técnicas serão introduzidas nesta dissertação. A primeira delas, ATISA (Adaptive Threshold-based Instance Selection Algorithm), mantém instâncias com base em um critério que usa a distância de cada instância ao seu inimigo mais próximo como um limiar. Essa característica prioriza instâncias próximas às fronteiras de decisão, que são mais determinantes no processo de classificação. O ATISA é apresentado em três diferentes algoritmos, cada um com abordagens distintas. A segunda técnica proposta é uma adaptação do SSMA (Steady- State Memetic Algorithm), já utilizado para a seleção de instâncias, para a síntese de protótipos. Aqui chamado de SSMA2, ele é um algoritmo evolucionário que cria protótipos que representam instâncias e que podem não estar contidos no conjunto original de treinamento. Durante o processo de evolução, ele realiza um passo de busca local para refinar soluções, vem daí a denominação memético. Ambos, ATISA e SSMA2, apresentaram-se como alternativas dentre as técnicas de redução de instâncias existentes, de acordo com os experimentos realizados
publishDate 2010
dc.date.issued.fl_str_mv 2010-01-31
dc.date.accessioned.fl_str_mv 2014-06-12T15:55:36Z
dc.date.available.fl_str_mv 2014-06-12T15:55:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Lima Pereira, Cesar; Darmiton da Cunha Cavalcanti, George. Técnicas de redução de instâncias: ATISA e SSMA2. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/2229
dc.identifier.dark.fl_str_mv ark:/64986/0013000000ffk
identifier_str_mv Lima Pereira, Cesar; Darmiton da Cunha Cavalcanti, George. Técnicas de redução de instâncias: ATISA e SSMA2. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010.
ark:/64986/0013000000ffk
url https://repositorio.ufpe.br/handle/123456789/2229
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/2229/4/arquivo2273_1.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/2229/1/arquivo2273_1.pdf
https://repositorio.ufpe.br/bitstream/123456789/2229/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/2229/3/arquivo2273_1.pdf.txt
bitstream.checksum.fl_str_mv 19dd21311f13362580fa4283184d8c3c
0eb4bb8ecfe790f72029c6e54c3438f6
8a4605be74aa9ea9d79846c1fba20a33
37e755dafe370b764b5a56123525f2e3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172679350616064