Técnicas de redução de instâncias: ATISA e SSMA2
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000000ffk |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/2229 |
Resumo: | Algoritmos de aprendizagem baseados em instâncias geralmente fazem uso de grandes conjuntos de treinamento. Esses algoritmos podem necessitar de razoável espaço de armazenamento para manter esses conjuntos, ou mesmo sofrer com elevado custo computacional para a realização da aprendizagem, ou durante generalizações. Um processo de seleção de instâncias específicas para uso na aprendizagem pode influenciar fortemente o desempenho dos algoritmos baseados em instâncias. Eles podem ser melhorados em quesitos como: requisitos de armazenamento, tempo de execução e também em poder de classificação. Uma variedade de técnicas da literatura atuam com a finalidade da redução de instâncias em um conjunto de treinamento. Duas novas técnicas serão introduzidas nesta dissertação. A primeira delas, ATISA (Adaptive Threshold-based Instance Selection Algorithm), mantém instâncias com base em um critério que usa a distância de cada instância ao seu inimigo mais próximo como um limiar. Essa característica prioriza instâncias próximas às fronteiras de decisão, que são mais determinantes no processo de classificação. O ATISA é apresentado em três diferentes algoritmos, cada um com abordagens distintas. A segunda técnica proposta é uma adaptação do SSMA (Steady- State Memetic Algorithm), já utilizado para a seleção de instâncias, para a síntese de protótipos. Aqui chamado de SSMA2, ele é um algoritmo evolucionário que cria protótipos que representam instâncias e que podem não estar contidos no conjunto original de treinamento. Durante o processo de evolução, ele realiza um passo de busca local para refinar soluções, vem daí a denominação memético. Ambos, ATISA e SSMA2, apresentaram-se como alternativas dentre as técnicas de redução de instâncias existentes, de acordo com os experimentos realizados |
id |
UFPE_1a90d8be8cc88ed915a4b857ac711239 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/2229 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Lima Pereira, CesarDarmiton da Cunha Cavalcanti, George 2014-06-12T15:55:36Z2014-06-12T15:55:36Z2010-01-31Lima Pereira, Cesar; Darmiton da Cunha Cavalcanti, George. Técnicas de redução de instâncias: ATISA e SSMA2. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010.https://repositorio.ufpe.br/handle/123456789/2229ark:/64986/0013000000ffkAlgoritmos de aprendizagem baseados em instâncias geralmente fazem uso de grandes conjuntos de treinamento. Esses algoritmos podem necessitar de razoável espaço de armazenamento para manter esses conjuntos, ou mesmo sofrer com elevado custo computacional para a realização da aprendizagem, ou durante generalizações. Um processo de seleção de instâncias específicas para uso na aprendizagem pode influenciar fortemente o desempenho dos algoritmos baseados em instâncias. Eles podem ser melhorados em quesitos como: requisitos de armazenamento, tempo de execução e também em poder de classificação. Uma variedade de técnicas da literatura atuam com a finalidade da redução de instâncias em um conjunto de treinamento. Duas novas técnicas serão introduzidas nesta dissertação. A primeira delas, ATISA (Adaptive Threshold-based Instance Selection Algorithm), mantém instâncias com base em um critério que usa a distância de cada instância ao seu inimigo mais próximo como um limiar. Essa característica prioriza instâncias próximas às fronteiras de decisão, que são mais determinantes no processo de classificação. O ATISA é apresentado em três diferentes algoritmos, cada um com abordagens distintas. A segunda técnica proposta é uma adaptação do SSMA (Steady- State Memetic Algorithm), já utilizado para a seleção de instâncias, para a síntese de protótipos. Aqui chamado de SSMA2, ele é um algoritmo evolucionário que cria protótipos que representam instâncias e que podem não estar contidos no conjunto original de treinamento. Durante o processo de evolução, ele realiza um passo de busca local para refinar soluções, vem daí a denominação memético. Ambos, ATISA e SSMA2, apresentaram-se como alternativas dentre as técnicas de redução de instâncias existentes, de acordo com os experimentos realizadosFundação de Amparo à Ciência e Tecnologia do Estado de PernambucoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAprendizagem baseada em instânciasRegra do vizinho mais próximoRedução de instânciasSeleção de protótiposTécnicas de redução de instâncias: ATISA e SSMA2info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo2273_1.pdf.jpgarquivo2273_1.pdf.jpgGenerated Thumbnailimage/jpeg1225https://repositorio.ufpe.br/bitstream/123456789/2229/4/arquivo2273_1.pdf.jpg19dd21311f13362580fa4283184d8c3cMD54ORIGINALarquivo2273_1.pdfapplication/pdf1625266https://repositorio.ufpe.br/bitstream/123456789/2229/1/arquivo2273_1.pdf0eb4bb8ecfe790f72029c6e54c3438f6MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/2229/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo2273_1.pdf.txtarquivo2273_1.pdf.txtExtracted texttext/plain242352https://repositorio.ufpe.br/bitstream/123456789/2229/3/arquivo2273_1.pdf.txt37e755dafe370b764b5a56123525f2e3MD53123456789/22292019-10-25 12:38:37.014oai:repositorio.ufpe.br:123456789/2229Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T15:38:37Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Técnicas de redução de instâncias: ATISA e SSMA2 |
title |
Técnicas de redução de instâncias: ATISA e SSMA2 |
spellingShingle |
Técnicas de redução de instâncias: ATISA e SSMA2 Lima Pereira, Cesar Aprendizagem baseada em instâncias Regra do vizinho mais próximo Redução de instâncias Seleção de protótipos |
title_short |
Técnicas de redução de instâncias: ATISA e SSMA2 |
title_full |
Técnicas de redução de instâncias: ATISA e SSMA2 |
title_fullStr |
Técnicas de redução de instâncias: ATISA e SSMA2 |
title_full_unstemmed |
Técnicas de redução de instâncias: ATISA e SSMA2 |
title_sort |
Técnicas de redução de instâncias: ATISA e SSMA2 |
author |
Lima Pereira, Cesar |
author_facet |
Lima Pereira, Cesar |
author_role |
author |
dc.contributor.author.fl_str_mv |
Lima Pereira, Cesar |
dc.contributor.advisor1.fl_str_mv |
Darmiton da Cunha Cavalcanti, George |
contributor_str_mv |
Darmiton da Cunha Cavalcanti, George |
dc.subject.por.fl_str_mv |
Aprendizagem baseada em instâncias Regra do vizinho mais próximo Redução de instâncias Seleção de protótipos |
topic |
Aprendizagem baseada em instâncias Regra do vizinho mais próximo Redução de instâncias Seleção de protótipos |
description |
Algoritmos de aprendizagem baseados em instâncias geralmente fazem uso de grandes conjuntos de treinamento. Esses algoritmos podem necessitar de razoável espaço de armazenamento para manter esses conjuntos, ou mesmo sofrer com elevado custo computacional para a realização da aprendizagem, ou durante generalizações. Um processo de seleção de instâncias específicas para uso na aprendizagem pode influenciar fortemente o desempenho dos algoritmos baseados em instâncias. Eles podem ser melhorados em quesitos como: requisitos de armazenamento, tempo de execução e também em poder de classificação. Uma variedade de técnicas da literatura atuam com a finalidade da redução de instâncias em um conjunto de treinamento. Duas novas técnicas serão introduzidas nesta dissertação. A primeira delas, ATISA (Adaptive Threshold-based Instance Selection Algorithm), mantém instâncias com base em um critério que usa a distância de cada instância ao seu inimigo mais próximo como um limiar. Essa característica prioriza instâncias próximas às fronteiras de decisão, que são mais determinantes no processo de classificação. O ATISA é apresentado em três diferentes algoritmos, cada um com abordagens distintas. A segunda técnica proposta é uma adaptação do SSMA (Steady- State Memetic Algorithm), já utilizado para a seleção de instâncias, para a síntese de protótipos. Aqui chamado de SSMA2, ele é um algoritmo evolucionário que cria protótipos que representam instâncias e que podem não estar contidos no conjunto original de treinamento. Durante o processo de evolução, ele realiza um passo de busca local para refinar soluções, vem daí a denominação memético. Ambos, ATISA e SSMA2, apresentaram-se como alternativas dentre as técnicas de redução de instâncias existentes, de acordo com os experimentos realizados |
publishDate |
2010 |
dc.date.issued.fl_str_mv |
2010-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T15:55:36Z |
dc.date.available.fl_str_mv |
2014-06-12T15:55:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Lima Pereira, Cesar; Darmiton da Cunha Cavalcanti, George. Técnicas de redução de instâncias: ATISA e SSMA2. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/2229 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000000ffk |
identifier_str_mv |
Lima Pereira, Cesar; Darmiton da Cunha Cavalcanti, George. Técnicas de redução de instâncias: ATISA e SSMA2. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010. ark:/64986/0013000000ffk |
url |
https://repositorio.ufpe.br/handle/123456789/2229 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/2229/4/arquivo2273_1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/2229/1/arquivo2273_1.pdf https://repositorio.ufpe.br/bitstream/123456789/2229/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/2229/3/arquivo2273_1.pdf.txt |
bitstream.checksum.fl_str_mv |
19dd21311f13362580fa4283184d8c3c 0eb4bb8ecfe790f72029c6e54c3438f6 8a4605be74aa9ea9d79846c1fba20a33 37e755dafe370b764b5a56123525f2e3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172679350616064 |