Modelos de acoplamento de SIS

Detalhes bibliográficos
Autor(a) principal: DIDIER, Maria Ângela Caldas
Data de Publicação: 2011
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000qdmp
Texto Completo: https://repositorio.ufpe.br/handle/123456789/7015
Resumo: Neste trabalho, pretendemos estudar as vantagens e as limitações dos modelos de acoplamento de SIS(suscetíveis - infectados - suscetíveis) determinísticos e estocásticos. Nosso objetivo principal é através de uma modelagem minimalista tentar explicitar algumas dificuldades encontradas com a modelagem de doenças tão complexas como a Esquistossomose e as Infecçãoes Hospitares. A alta variância nos dados obtidos em campo para tais modelos [6] têm sido um obstáculo na descrição dessas doenças. É nossa intenção tentar descrever tal fenômeno como sendo resultado de um simples acoplamento entre duas populações. Em um segundo momento, pretendemos estabelecer relações entre conceitos determinísticos e os sistemas estocásticos a exemplo do que é feito para o modelo SIS [19-b, 5, 10]. Tal relação permitiria uma melhor descrição dos modelos estocásticos bem como discutir estratégias de controle. Para tanto, estudamos a suscetibilidade dos modelos criados aos seus parâmetros de base. Como doenças possíveis de serem estruturalmente conceituadas através de nossos modelos citamos novamente os casos da Esquistossomose e das Infecções Hospitalares. Na primeira, temos a população de humanos e a população de focos da doença. Na segunda, temos a população dos doentes e a população composta por médicos e enfermeiros de um hospital. Com o propósito descrito acima, desenvolvemos alguns modelos de acoplamento de modelos SIS determinísticos e estocásticos para simular e estudar a dinâmica da difusão de infecções numa comunidade. Foi construído um modelo estocástico computacional de acoplamento de dois SIS e um modelo determinístico com propósito de descrever o modelo qualitativamente. Nos modelos determinísticos o valor da reprodutividade basal representado pelo símbolo R0, determina a persistência ou extinção da doença. Foi realizada uma análise da estabilidade do equilíbrio determinístico em função da reprodutividade basal definida para o modelo determinístico. Para o modelo computacional, estudamos a convergência para um equilíbrio do número de indivíduos infectados de cada popula ção e da reprodutividade basal calculada. Analisamos o comportamento da reprodutividade basal em função do tamanho de uma das populações e também, em função do tempo de recupera ção dos indivíduos de uma população considerada. Observando a existência de epidemias onde os indivíduos podem se infectar mais de uma vez(superinfecção) como por exemplo, a esquistossomose, resolvemos acrescentar a condição de reinfecção no modelo computacional e analisar o comportamento da reprodutividade basal. Foram construídos modelos estocásticos de acoplamento de modelos SIS em tempo-discreto e em tempo-contínuo introduzindo um vetor bidimensional de cadeias de Markov (X(t); Y (t)), t 0 onde X(t) representa o número de indivíduos infectados de uma população H e Y (t), o número de indivíduos infectados de umapopulação F. Consideramos constantes os tamanhos das duas populações, as taxas de transmiss ão e as taxas de recuperação. Estudamos numericamente o valor esperado do número de indivíduos infectados da população H em função do tamanho da população F e, também, em função do tempo de recuperação dos indivíduos da população F. Nos modelos estocásticos, em alguns casos, o tempo até a extinção da doença pode ser muito longo. Portanto, investigamos a possibilidade de construção de uma distribuição de probabilidade condicionada à não-extinção da doença: a distribuição de probabilidade quase-estacionária. O tratamento analítico para a sua obtenção é complexo e encontra um sem número de dificuldades. Recorremos então a aproxima ções analíticas e numéricas para a sua determinação.Mostramos que o tempo de extinção para o modelo de acoplamento em tempo contínuo construído com início em uma distribuição quase-estacionária tem crescimento exponencial. Construímos um modelo de acoplamento de SIS em tempo-contínuo sob uma abordagem estrutural dentro de um processo semi-Markoviano permitindo formular explicitamente o tempo de espera para a extinção de uma epidemia e a sua variância a partir do estado de infecção de cada população. Uma análise do valor esperado para o tempo de extinção e de sua variância em função dos parâmetros do modelo foi realizada. Finalmente, construímos um modelo de acoplamento de SIS onde foi dado um tratamento determin ístico e estudamos o equilíbrio da matriz de covariância para as variáveis aleatórias que representam os números de indivíduos infectados de cada população
id UFPE_1eb9d6d5e150cba677c1f40cc2974377
oai_identifier_str oai:repositorio.ufpe.br:123456789/7015
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling DIDIER, Maria Ângela CaldasCASTILHO, César Augusto Rodrigues2014-06-12T18:28:21Z2014-06-12T18:28:21Z2011-01-31Ãngela caldas Didier, Maria; Augusto Rodrigues Castilho, César. Modelos de acoplamento de SIS. 2011. Tese (Doutorado). Programa de Pós-Graduação em Matemática Computacional, Universidade Federal de Pernambuco, Recife, 2011.https://repositorio.ufpe.br/handle/123456789/7015ark:/64986/001300000qdmpNeste trabalho, pretendemos estudar as vantagens e as limitações dos modelos de acoplamento de SIS(suscetíveis - infectados - suscetíveis) determinísticos e estocásticos. Nosso objetivo principal é através de uma modelagem minimalista tentar explicitar algumas dificuldades encontradas com a modelagem de doenças tão complexas como a Esquistossomose e as Infecçãoes Hospitares. A alta variância nos dados obtidos em campo para tais modelos [6] têm sido um obstáculo na descrição dessas doenças. É nossa intenção tentar descrever tal fenômeno como sendo resultado de um simples acoplamento entre duas populações. Em um segundo momento, pretendemos estabelecer relações entre conceitos determinísticos e os sistemas estocásticos a exemplo do que é feito para o modelo SIS [19-b, 5, 10]. Tal relação permitiria uma melhor descrição dos modelos estocásticos bem como discutir estratégias de controle. Para tanto, estudamos a suscetibilidade dos modelos criados aos seus parâmetros de base. Como doenças possíveis de serem estruturalmente conceituadas através de nossos modelos citamos novamente os casos da Esquistossomose e das Infecções Hospitalares. Na primeira, temos a população de humanos e a população de focos da doença. Na segunda, temos a população dos doentes e a população composta por médicos e enfermeiros de um hospital. Com o propósito descrito acima, desenvolvemos alguns modelos de acoplamento de modelos SIS determinísticos e estocásticos para simular e estudar a dinâmica da difusão de infecções numa comunidade. Foi construído um modelo estocástico computacional de acoplamento de dois SIS e um modelo determinístico com propósito de descrever o modelo qualitativamente. Nos modelos determinísticos o valor da reprodutividade basal representado pelo símbolo R0, determina a persistência ou extinção da doença. Foi realizada uma análise da estabilidade do equilíbrio determinístico em função da reprodutividade basal definida para o modelo determinístico. Para o modelo computacional, estudamos a convergência para um equilíbrio do número de indivíduos infectados de cada popula ção e da reprodutividade basal calculada. Analisamos o comportamento da reprodutividade basal em função do tamanho de uma das populações e também, em função do tempo de recupera ção dos indivíduos de uma população considerada. Observando a existência de epidemias onde os indivíduos podem se infectar mais de uma vez(superinfecção) como por exemplo, a esquistossomose, resolvemos acrescentar a condição de reinfecção no modelo computacional e analisar o comportamento da reprodutividade basal. Foram construídos modelos estocásticos de acoplamento de modelos SIS em tempo-discreto e em tempo-contínuo introduzindo um vetor bidimensional de cadeias de Markov (X(t); Y (t)), t 0 onde X(t) representa o número de indivíduos infectados de uma população H e Y (t), o número de indivíduos infectados de umapopulação F. Consideramos constantes os tamanhos das duas populações, as taxas de transmiss ão e as taxas de recuperação. Estudamos numericamente o valor esperado do número de indivíduos infectados da população H em função do tamanho da população F e, também, em função do tempo de recuperação dos indivíduos da população F. Nos modelos estocásticos, em alguns casos, o tempo até a extinção da doença pode ser muito longo. Portanto, investigamos a possibilidade de construção de uma distribuição de probabilidade condicionada à não-extinção da doença: a distribuição de probabilidade quase-estacionária. O tratamento analítico para a sua obtenção é complexo e encontra um sem número de dificuldades. Recorremos então a aproxima ções analíticas e numéricas para a sua determinação.Mostramos que o tempo de extinção para o modelo de acoplamento em tempo contínuo construído com início em uma distribuição quase-estacionária tem crescimento exponencial. Construímos um modelo de acoplamento de SIS em tempo-contínuo sob uma abordagem estrutural dentro de um processo semi-Markoviano permitindo formular explicitamente o tempo de espera para a extinção de uma epidemia e a sua variância a partir do estado de infecção de cada população. Uma análise do valor esperado para o tempo de extinção e de sua variância em função dos parâmetros do modelo foi realizada. Finalmente, construímos um modelo de acoplamento de SIS onde foi dado um tratamento determin ístico e estudamos o equilíbrio da matriz de covariância para as variáveis aleatórias que representam os números de indivíduos infectados de cada populaçãoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEpidemiaAcoplamento de SIS LogísticosReprodutividade basalTempo de ExtinçãoProcesso de MarkovQuase-EstacionárioModelos de acoplamento de SISinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo3003_1.pdf.jpgarquivo3003_1.pdf.jpgGenerated Thumbnailimage/jpeg964https://repositorio.ufpe.br/bitstream/123456789/7015/4/arquivo3003_1.pdf.jpg77f9b2b14f7a9df88d4057fdc5a100c3MD54ORIGINALarquivo3003_1.pdfapplication/pdf10717686https://repositorio.ufpe.br/bitstream/123456789/7015/1/arquivo3003_1.pdff612042d14b0a209086c28de2f37580cMD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/7015/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo3003_1.pdf.txtarquivo3003_1.pdf.txtExtracted texttext/plain268576https://repositorio.ufpe.br/bitstream/123456789/7015/3/arquivo3003_1.pdf.txt0cda30095ad5c38c39c7535f8467c74aMD53123456789/70152019-10-25 03:13:33.301oai:repositorio.ufpe.br:123456789/7015Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T06:13:33Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Modelos de acoplamento de SIS
title Modelos de acoplamento de SIS
spellingShingle Modelos de acoplamento de SIS
DIDIER, Maria Ângela Caldas
Epidemia
Acoplamento de SIS Logísticos
Reprodutividade basal
Tempo de Extinção
Processo de Markov
Quase-Estacionário
title_short Modelos de acoplamento de SIS
title_full Modelos de acoplamento de SIS
title_fullStr Modelos de acoplamento de SIS
title_full_unstemmed Modelos de acoplamento de SIS
title_sort Modelos de acoplamento de SIS
author DIDIER, Maria Ângela Caldas
author_facet DIDIER, Maria Ângela Caldas
author_role author
dc.contributor.author.fl_str_mv DIDIER, Maria Ângela Caldas
dc.contributor.advisor1.fl_str_mv CASTILHO, César Augusto Rodrigues
contributor_str_mv CASTILHO, César Augusto Rodrigues
dc.subject.por.fl_str_mv Epidemia
Acoplamento de SIS Logísticos
Reprodutividade basal
Tempo de Extinção
Processo de Markov
Quase-Estacionário
topic Epidemia
Acoplamento de SIS Logísticos
Reprodutividade basal
Tempo de Extinção
Processo de Markov
Quase-Estacionário
description Neste trabalho, pretendemos estudar as vantagens e as limitações dos modelos de acoplamento de SIS(suscetíveis - infectados - suscetíveis) determinísticos e estocásticos. Nosso objetivo principal é através de uma modelagem minimalista tentar explicitar algumas dificuldades encontradas com a modelagem de doenças tão complexas como a Esquistossomose e as Infecçãoes Hospitares. A alta variância nos dados obtidos em campo para tais modelos [6] têm sido um obstáculo na descrição dessas doenças. É nossa intenção tentar descrever tal fenômeno como sendo resultado de um simples acoplamento entre duas populações. Em um segundo momento, pretendemos estabelecer relações entre conceitos determinísticos e os sistemas estocásticos a exemplo do que é feito para o modelo SIS [19-b, 5, 10]. Tal relação permitiria uma melhor descrição dos modelos estocásticos bem como discutir estratégias de controle. Para tanto, estudamos a suscetibilidade dos modelos criados aos seus parâmetros de base. Como doenças possíveis de serem estruturalmente conceituadas através de nossos modelos citamos novamente os casos da Esquistossomose e das Infecções Hospitalares. Na primeira, temos a população de humanos e a população de focos da doença. Na segunda, temos a população dos doentes e a população composta por médicos e enfermeiros de um hospital. Com o propósito descrito acima, desenvolvemos alguns modelos de acoplamento de modelos SIS determinísticos e estocásticos para simular e estudar a dinâmica da difusão de infecções numa comunidade. Foi construído um modelo estocástico computacional de acoplamento de dois SIS e um modelo determinístico com propósito de descrever o modelo qualitativamente. Nos modelos determinísticos o valor da reprodutividade basal representado pelo símbolo R0, determina a persistência ou extinção da doença. Foi realizada uma análise da estabilidade do equilíbrio determinístico em função da reprodutividade basal definida para o modelo determinístico. Para o modelo computacional, estudamos a convergência para um equilíbrio do número de indivíduos infectados de cada popula ção e da reprodutividade basal calculada. Analisamos o comportamento da reprodutividade basal em função do tamanho de uma das populações e também, em função do tempo de recupera ção dos indivíduos de uma população considerada. Observando a existência de epidemias onde os indivíduos podem se infectar mais de uma vez(superinfecção) como por exemplo, a esquistossomose, resolvemos acrescentar a condição de reinfecção no modelo computacional e analisar o comportamento da reprodutividade basal. Foram construídos modelos estocásticos de acoplamento de modelos SIS em tempo-discreto e em tempo-contínuo introduzindo um vetor bidimensional de cadeias de Markov (X(t); Y (t)), t 0 onde X(t) representa o número de indivíduos infectados de uma população H e Y (t), o número de indivíduos infectados de umapopulação F. Consideramos constantes os tamanhos das duas populações, as taxas de transmiss ão e as taxas de recuperação. Estudamos numericamente o valor esperado do número de indivíduos infectados da população H em função do tamanho da população F e, também, em função do tempo de recuperação dos indivíduos da população F. Nos modelos estocásticos, em alguns casos, o tempo até a extinção da doença pode ser muito longo. Portanto, investigamos a possibilidade de construção de uma distribuição de probabilidade condicionada à não-extinção da doença: a distribuição de probabilidade quase-estacionária. O tratamento analítico para a sua obtenção é complexo e encontra um sem número de dificuldades. Recorremos então a aproxima ções analíticas e numéricas para a sua determinação.Mostramos que o tempo de extinção para o modelo de acoplamento em tempo contínuo construído com início em uma distribuição quase-estacionária tem crescimento exponencial. Construímos um modelo de acoplamento de SIS em tempo-contínuo sob uma abordagem estrutural dentro de um processo semi-Markoviano permitindo formular explicitamente o tempo de espera para a extinção de uma epidemia e a sua variância a partir do estado de infecção de cada população. Uma análise do valor esperado para o tempo de extinção e de sua variância em função dos parâmetros do modelo foi realizada. Finalmente, construímos um modelo de acoplamento de SIS onde foi dado um tratamento determin ístico e estudamos o equilíbrio da matriz de covariância para as variáveis aleatórias que representam os números de indivíduos infectados de cada população
publishDate 2011
dc.date.issued.fl_str_mv 2011-01-31
dc.date.accessioned.fl_str_mv 2014-06-12T18:28:21Z
dc.date.available.fl_str_mv 2014-06-12T18:28:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Ãngela caldas Didier, Maria; Augusto Rodrigues Castilho, César. Modelos de acoplamento de SIS. 2011. Tese (Doutorado). Programa de Pós-Graduação em Matemática Computacional, Universidade Federal de Pernambuco, Recife, 2011.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/7015
dc.identifier.dark.fl_str_mv ark:/64986/001300000qdmp
identifier_str_mv Ãngela caldas Didier, Maria; Augusto Rodrigues Castilho, César. Modelos de acoplamento de SIS. 2011. Tese (Doutorado). Programa de Pós-Graduação em Matemática Computacional, Universidade Federal de Pernambuco, Recife, 2011.
ark:/64986/001300000qdmp
url https://repositorio.ufpe.br/handle/123456789/7015
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/7015/4/arquivo3003_1.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/7015/1/arquivo3003_1.pdf
https://repositorio.ufpe.br/bitstream/123456789/7015/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/7015/3/arquivo3003_1.pdf.txt
bitstream.checksum.fl_str_mv 77f9b2b14f7a9df88d4057fdc5a100c3
f612042d14b0a209086c28de2f37580c
8a4605be74aa9ea9d79846c1fba20a33
0cda30095ad5c38c39c7535f8467c74a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172885565669376