Resilience in the design of critical infrastructure: applications in power grid and logistic systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000004v73 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/29576 |
Resumo: | Due to the great need to meet demand and remain competitive, companies are seeking to become more resilient, and thus systems must withstand, adapt to, and rapidly recover from the effects of undesired events. Resilience can be considered as the capacity of an entity to recover from a disruption, involving the ability to reduce effectively both magnitude and duration of the deviation from the nominal performance. This thesis proposes an optimization model, using Mixed-Integer Linear Programming (MILP), to support decisions related to making investments in the design of infrastructure critical systems that experience interruptions in supplying their customer demands due to disruptive events. In this approach, by considering the probabilities of the occurrence of a set of such disruptive events, the model minimizes the overall expected costs by determining an optimal strategy involving pre- and post-event actions. The pre-event actions, which are considered during the initial design phase, take into account the resilience capacity (absorption, adaptation and restoration). Although, according to the literature, pre-event resilience actions are faster in recovering the system, more useful and more cost-effective, especially when they are implemented during system design, most of research papers about resilience have focused on post-event policies. Therefore, in this work, in addition to post-event recovery actions, we corroborate with literature and consider pre-event actions so as to reduce recovery costs and increase recovery speed. The optimization model is thus developed and applied in two contexts: power grids serving industrial clients and a logistics distribution network. The results demonstrate that higher investments during the design phase, when optimally allocated, have the potential to improve infrastructure performance and still reduce overall costs. |
id |
UFPE_20ff75b815e2d1969439720e6b71d8b3 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/29576 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
DINIZ, Helder Henrique Limahttp://lattes.cnpq.br/6050306499643993http://lattes.cnpq.br/7778828466828647MOURA, Márcio José das Chagas2019-03-07T22:06:20Z2019-03-07T22:06:20Z2017-12-28https://repositorio.ufpe.br/handle/123456789/29576ark:/64986/0013000004v73Due to the great need to meet demand and remain competitive, companies are seeking to become more resilient, and thus systems must withstand, adapt to, and rapidly recover from the effects of undesired events. Resilience can be considered as the capacity of an entity to recover from a disruption, involving the ability to reduce effectively both magnitude and duration of the deviation from the nominal performance. This thesis proposes an optimization model, using Mixed-Integer Linear Programming (MILP), to support decisions related to making investments in the design of infrastructure critical systems that experience interruptions in supplying their customer demands due to disruptive events. In this approach, by considering the probabilities of the occurrence of a set of such disruptive events, the model minimizes the overall expected costs by determining an optimal strategy involving pre- and post-event actions. The pre-event actions, which are considered during the initial design phase, take into account the resilience capacity (absorption, adaptation and restoration). Although, according to the literature, pre-event resilience actions are faster in recovering the system, more useful and more cost-effective, especially when they are implemented during system design, most of research papers about resilience have focused on post-event policies. Therefore, in this work, in addition to post-event recovery actions, we corroborate with literature and consider pre-event actions so as to reduce recovery costs and increase recovery speed. The optimization model is thus developed and applied in two contexts: power grids serving industrial clients and a logistics distribution network. The results demonstrate that higher investments during the design phase, when optimally allocated, have the potential to improve infrastructure performance and still reduce overall costs.FACEPEDevido à grande necessidade de atender à demanda e permanecerem competitivas, as empresas estão buscando tornar-se mais resilientes e, portanto, os sistemas devem resistir, se adaptar e se recuperar rapidamente dos efeitos de eventos indesejados. Resiliência pode ser considerada como a capacidade de uma entidade se recuperar de uma interrupção, envolvendo a capacidade de reduzir efetivamente tanto a magnitude como a duração do desvio do desempenho nominal do sistema. Esta tese propõe um modelo de otimização, utilizando Programação Linear Inteira-Mista (PLIM), para apoiar decisões relacionadas à realização de investimentos em projeto de sistemas infraestrutura crítica que experimentam interrupções no fornecimento da demanda de seus clientes devido a eventos indesejados. Nesta abordagem, ao considerar as probabilidades da ocorrência de um conjunto desses eventos, o modelo minimiza os custos esperados totais ao determinar uma estratégia ótima envolvendo ações pré e pós-evento. As ações pré-evento, que são consideradas durante a fase inicial de projeto, levam em consideração a capacidade de resiliência (absorção, adaptação e restauração). Embora, conforme a literature, as ações de resiliência pré-eventos sejam mais rápidas na recuperação do sistema, mais útil e mais econômica, especialmente quando elas são implementadas durante a fase inicial nos projetos dos sistemas, a maioria dos trabalhos de pesquisa sobre resiliência se concentraram nas políticas pós-evento. Portanto, neste trabalho, além das ações de recuperação pós-evento, corroboramos com a literature e consideramos ações pré-evento, de modo a reduzir os custos de recuperação e aumentar a velocidade de recuperação. O modelo de otimização é, portanto, desenvolvido e aplicado em dois contextos: fornecimento de energia elétrica que atendem clientes industriais e uma rede de distribuição logística. Os resultados demonstram que altos investimentos durante a fase de projeto, quando alocados de forma otimizada, têm o potencial de melhorar o desempenho da infraestrutura e ainda reduzir os custos gerais.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia de ProducaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEngenharia de ProduçãoResiliênciaProjetoDecisões pré-eventoInfraestrutura críticaFornecimento de energiaLogísticaResilience in the design of critical infrastructure: applications in power grid and logistic systemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Helder Henrique Lima Diniz.pdf.jpgTESE Helder Henrique Lima Diniz.pdf.jpgGenerated Thumbnailimage/jpeg1185https://repositorio.ufpe.br/bitstream/123456789/29576/5/TESE%20Helder%20Henrique%20Lima%20Diniz.pdf.jpgd985cd451d50c1b722efad5355330e6bMD55ORIGINALTESE Helder Henrique Lima Diniz.pdfTESE Helder Henrique Lima Diniz.pdfapplication/pdf2648125https://repositorio.ufpe.br/bitstream/123456789/29576/1/TESE%20Helder%20Henrique%20Lima%20Diniz.pdfdfb04a5b5fe28d74cbbcaa2dd370b0d6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/29576/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/29576/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTESE Helder Henrique Lima Diniz.pdf.txtTESE Helder Henrique Lima Diniz.pdf.txtExtracted texttext/plain202895https://repositorio.ufpe.br/bitstream/123456789/29576/4/TESE%20Helder%20Henrique%20Lima%20Diniz.pdf.txt1daeac4ea198b6beb63b3a7da9a8ac90MD54123456789/295762019-10-25 08:51:28.325oai:repositorio.ufpe.br:123456789/29576TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T11:51:28Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Resilience in the design of critical infrastructure: applications in power grid and logistic systems |
title |
Resilience in the design of critical infrastructure: applications in power grid and logistic systems |
spellingShingle |
Resilience in the design of critical infrastructure: applications in power grid and logistic systems DINIZ, Helder Henrique Lima Engenharia de Produção Resiliência Projeto Decisões pré-evento Infraestrutura crítica Fornecimento de energia Logística |
title_short |
Resilience in the design of critical infrastructure: applications in power grid and logistic systems |
title_full |
Resilience in the design of critical infrastructure: applications in power grid and logistic systems |
title_fullStr |
Resilience in the design of critical infrastructure: applications in power grid and logistic systems |
title_full_unstemmed |
Resilience in the design of critical infrastructure: applications in power grid and logistic systems |
title_sort |
Resilience in the design of critical infrastructure: applications in power grid and logistic systems |
author |
DINIZ, Helder Henrique Lima |
author_facet |
DINIZ, Helder Henrique Lima |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6050306499643993 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/7778828466828647 |
dc.contributor.author.fl_str_mv |
DINIZ, Helder Henrique Lima |
dc.contributor.advisor1.fl_str_mv |
MOURA, Márcio José das Chagas |
contributor_str_mv |
MOURA, Márcio José das Chagas |
dc.subject.por.fl_str_mv |
Engenharia de Produção Resiliência Projeto Decisões pré-evento Infraestrutura crítica Fornecimento de energia Logística |
topic |
Engenharia de Produção Resiliência Projeto Decisões pré-evento Infraestrutura crítica Fornecimento de energia Logística |
description |
Due to the great need to meet demand and remain competitive, companies are seeking to become more resilient, and thus systems must withstand, adapt to, and rapidly recover from the effects of undesired events. Resilience can be considered as the capacity of an entity to recover from a disruption, involving the ability to reduce effectively both magnitude and duration of the deviation from the nominal performance. This thesis proposes an optimization model, using Mixed-Integer Linear Programming (MILP), to support decisions related to making investments in the design of infrastructure critical systems that experience interruptions in supplying their customer demands due to disruptive events. In this approach, by considering the probabilities of the occurrence of a set of such disruptive events, the model minimizes the overall expected costs by determining an optimal strategy involving pre- and post-event actions. The pre-event actions, which are considered during the initial design phase, take into account the resilience capacity (absorption, adaptation and restoration). Although, according to the literature, pre-event resilience actions are faster in recovering the system, more useful and more cost-effective, especially when they are implemented during system design, most of research papers about resilience have focused on post-event policies. Therefore, in this work, in addition to post-event recovery actions, we corroborate with literature and consider pre-event actions so as to reduce recovery costs and increase recovery speed. The optimization model is thus developed and applied in two contexts: power grids serving industrial clients and a logistics distribution network. The results demonstrate that higher investments during the design phase, when optimally allocated, have the potential to improve infrastructure performance and still reduce overall costs. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-12-28 |
dc.date.accessioned.fl_str_mv |
2019-03-07T22:06:20Z |
dc.date.available.fl_str_mv |
2019-03-07T22:06:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/29576 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000004v73 |
url |
https://repositorio.ufpe.br/handle/123456789/29576 |
identifier_str_mv |
ark:/64986/0013000004v73 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Engenharia de Producao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/29576/5/TESE%20Helder%20Henrique%20Lima%20Diniz.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/29576/1/TESE%20Helder%20Henrique%20Lima%20Diniz.pdf https://repositorio.ufpe.br/bitstream/123456789/29576/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/29576/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/29576/4/TESE%20Helder%20Henrique%20Lima%20Diniz.pdf.txt |
bitstream.checksum.fl_str_mv |
d985cd451d50c1b722efad5355330e6b dfb04a5b5fe28d74cbbcaa2dd370b0d6 e39d27027a6cc9cb039ad269a5db8e34 4b8a02c7f2818eaf00dcf2260dd5eb08 1daeac4ea198b6beb63b3a7da9a8ac90 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172723745226752 |