Determinação de aditivos detergentes dispersantes em gasolinautilizando a técnica do ring-oven e imagens hiperespectrais na região doinfravermelho próximo

Detalhes bibliográficos
Autor(a) principal: BRITO, Lívia Rodrigues e
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000gjm5
Texto Completo: https://repositorio.ufpe.br/handle/123456789/17177
Resumo: A adição de aditivos detergentes dispersantes nas gasolinas brasileiras será obrigatória a partir de julho de 2015. É necessário, portanto, desenvolver uma metodologia que permita quantificar esses aditivos para verificar o cumprimento da lei. Neste trabalho, é proposto um método que associa a técnica do ring-oven com as imagens hiperespectrais no infravermelho próximo (NIR-HI). Como os aditivos são adicionados em baixas concentrações, a técnica do ring-oven foi empregada para concentrá-los previamente à análise por NIR-HI. Anéis foram produzidos a partir de amostras de gasolinas comum adicionadas dos aditivos (denominados G, T, W e Y) fornecidos pela Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP) e as imagens adquiridas utilizando uma câmera hiperespectral (SisuCHEMA). Três estratégias de extração dos espectros do anel foram testadas a fim de se escolher a mais rápida e objetiva. A estratégia escolhida se baseia nos histogramas dos escores da primeira componente principal das imagens analisadas individualmente. Modelos de calibração individuais para cada aditivo foram construídos empregando a regressão por mínimos quadrados parciais (PLS), por isso, fez-se necessária uma etapa prévia de classificação. O melhor resultado para classificação foi obtido empregando a análise discriminante linear (LDA) associada ao algoritmo genético (GA) para seleção de variáveis, o qual apresentou uma taxa de classificações corretas de 92,31 %. Observou-se que a maioria dos erros de classificação envolveram amostras dos aditivos G e W. Um único modelo de regressão para esses dois aditivos foi, então, construído e seu erro foi equivalente aos dos modelos individuais. Os modelos de regressão apresentaram erros médios de predição entre 2 e 15 %. Esses resultados mostram que a metodologia proposta pode ser utilizada para determinar as concentrações dos aditivos com confiabilidade e garantir que eles estão sendo adicionados conforme a lei.
id UFPE_23d3643aa2514e9f5ad05268df296534
oai_identifier_str oai:repositorio.ufpe.br:123456789/17177
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling BRITO, Lívia Rodrigues ehttp://lattes.cnpq.br/6899144209969671http://lattes.cnpq.br/6880348154073236PIMENTEL, Maria Fernanda2016-06-29T11:48:02Z2016-06-29T11:48:02Z2014-08-25https://repositorio.ufpe.br/handle/123456789/17177ark:/64986/001300000gjm5A adição de aditivos detergentes dispersantes nas gasolinas brasileiras será obrigatória a partir de julho de 2015. É necessário, portanto, desenvolver uma metodologia que permita quantificar esses aditivos para verificar o cumprimento da lei. Neste trabalho, é proposto um método que associa a técnica do ring-oven com as imagens hiperespectrais no infravermelho próximo (NIR-HI). Como os aditivos são adicionados em baixas concentrações, a técnica do ring-oven foi empregada para concentrá-los previamente à análise por NIR-HI. Anéis foram produzidos a partir de amostras de gasolinas comum adicionadas dos aditivos (denominados G, T, W e Y) fornecidos pela Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP) e as imagens adquiridas utilizando uma câmera hiperespectral (SisuCHEMA). Três estratégias de extração dos espectros do anel foram testadas a fim de se escolher a mais rápida e objetiva. A estratégia escolhida se baseia nos histogramas dos escores da primeira componente principal das imagens analisadas individualmente. Modelos de calibração individuais para cada aditivo foram construídos empregando a regressão por mínimos quadrados parciais (PLS), por isso, fez-se necessária uma etapa prévia de classificação. O melhor resultado para classificação foi obtido empregando a análise discriminante linear (LDA) associada ao algoritmo genético (GA) para seleção de variáveis, o qual apresentou uma taxa de classificações corretas de 92,31 %. Observou-se que a maioria dos erros de classificação envolveram amostras dos aditivos G e W. Um único modelo de regressão para esses dois aditivos foi, então, construído e seu erro foi equivalente aos dos modelos individuais. Os modelos de regressão apresentaram erros médios de predição entre 2 e 15 %. Esses resultados mostram que a metodologia proposta pode ser utilizada para determinar as concentrações dos aditivos com confiabilidade e garantir que eles estão sendo adicionados conforme a lei.CNPqThe addition of detergent dispersant additives to Brazilian gasoline will be mandatory from July 2015. It is necessary, therefore, to develop a methodology that allows quantifying these additives to verify their compliance with the law. In this work, a method that associates the ring-oven technique with near infrared hyperspectral images (NIR-HI) is proposed. Because the additives are added in low concentrations, the ring-oven technique was employed to concentrate them prior to the NIR-HI analysis. Rings were produced from samples of gasolines without additives spiked with additives (called G, T, W and Y) provided by the National Agency of Petroleum, Natural Gas and Biofuels (ANP) and the images were acquired using a hyperspectral camera (SisuCHEMA). Three strategies for extraction of the ring spectra were tested in order to select the faster and most objective. The chosen strategy is based on the histograms of the first principal component scores of the images analyzed individually. Regression models were built for each additive using partial least squares (PLS) regression, so it was necessary to have a previous classification stage. The best classification result was obtained using the linear discriminant analysis (LDA) associated with the genetic algorithm (GA) for variable selection, which showed a correct classification rate of 92.31 %. It was observed that most of the misclassification errors involved the samples of the G and W additives. A single regression model was then built for these two additives and its error was equivalent to the errors of the individual models. The regression models showed average prediction errors between 2 and 15 %. These results show that the proposed methodology can be used to determine the additive concentrations with reliability and to ensure that they are been added according to the law.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em QuimicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessGasolinaAditivosRing-ovenImagem hiperespectralInfravermelho próximoGasolineAdditivesRing-ovenHyperspectral imageNear infraredDeterminação de aditivos detergentes dispersantes em gasolinautilizando a técnica do ring-oven e imagens hiperespectrais na região doinfravermelho próximoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDissertação de Mestrado - Lívia Rodrigues e Brito.pdf.jpgDissertação de Mestrado - Lívia Rodrigues e Brito.pdf.jpgGenerated Thumbnailimage/jpeg1208https://repositorio.ufpe.br/bitstream/123456789/17177/5/Disserta%c3%a7%c3%a3o%20de%20Mestrado%20-%20L%c3%advia%20Rodrigues%20e%20Brito.pdf.jpg5d2c12c5f0c1556d09bc9b5b5ff5614cMD55ORIGINALDissertação de Mestrado - Lívia Rodrigues e Brito.pdfDissertação de Mestrado - Lívia Rodrigues e Brito.pdfapplication/pdf11880513https://repositorio.ufpe.br/bitstream/123456789/17177/1/Disserta%c3%a7%c3%a3o%20de%20Mestrado%20-%20L%c3%advia%20Rodrigues%20e%20Brito.pdfcdf56fe284940b9c31e62271753b913fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/17177/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/17177/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDissertação de Mestrado - Lívia Rodrigues e Brito.pdf.txtDissertação de Mestrado - Lívia Rodrigues e Brito.pdf.txtExtracted texttext/plain286448https://repositorio.ufpe.br/bitstream/123456789/17177/4/Disserta%c3%a7%c3%a3o%20de%20Mestrado%20-%20L%c3%advia%20Rodrigues%20e%20Brito.pdf.txtb0f8e304e7b265f388f91790c1f525a7MD54123456789/171772019-10-25 18:59:50.622oai:repositorio.ufpe.br:123456789/17177TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T21:59:50Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Determinação de aditivos detergentes dispersantes em gasolinautilizando a técnica do ring-oven e imagens hiperespectrais na região doinfravermelho próximo
title Determinação de aditivos detergentes dispersantes em gasolinautilizando a técnica do ring-oven e imagens hiperespectrais na região doinfravermelho próximo
spellingShingle Determinação de aditivos detergentes dispersantes em gasolinautilizando a técnica do ring-oven e imagens hiperespectrais na região doinfravermelho próximo
BRITO, Lívia Rodrigues e
Gasolina
Aditivos
Ring-oven
Imagem hiperespectral
Infravermelho próximo
Gasoline
Additives
Ring-oven
Hyperspectral image
Near infrared
title_short Determinação de aditivos detergentes dispersantes em gasolinautilizando a técnica do ring-oven e imagens hiperespectrais na região doinfravermelho próximo
title_full Determinação de aditivos detergentes dispersantes em gasolinautilizando a técnica do ring-oven e imagens hiperespectrais na região doinfravermelho próximo
title_fullStr Determinação de aditivos detergentes dispersantes em gasolinautilizando a técnica do ring-oven e imagens hiperespectrais na região doinfravermelho próximo
title_full_unstemmed Determinação de aditivos detergentes dispersantes em gasolinautilizando a técnica do ring-oven e imagens hiperespectrais na região doinfravermelho próximo
title_sort Determinação de aditivos detergentes dispersantes em gasolinautilizando a técnica do ring-oven e imagens hiperespectrais na região doinfravermelho próximo
author BRITO, Lívia Rodrigues e
author_facet BRITO, Lívia Rodrigues e
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6899144209969671
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6880348154073236
dc.contributor.author.fl_str_mv BRITO, Lívia Rodrigues e
dc.contributor.advisor1.fl_str_mv PIMENTEL, Maria Fernanda
contributor_str_mv PIMENTEL, Maria Fernanda
dc.subject.por.fl_str_mv Gasolina
Aditivos
Ring-oven
Imagem hiperespectral
Infravermelho próximo
Gasoline
Additives
Ring-oven
Hyperspectral image
Near infrared
topic Gasolina
Aditivos
Ring-oven
Imagem hiperespectral
Infravermelho próximo
Gasoline
Additives
Ring-oven
Hyperspectral image
Near infrared
description A adição de aditivos detergentes dispersantes nas gasolinas brasileiras será obrigatória a partir de julho de 2015. É necessário, portanto, desenvolver uma metodologia que permita quantificar esses aditivos para verificar o cumprimento da lei. Neste trabalho, é proposto um método que associa a técnica do ring-oven com as imagens hiperespectrais no infravermelho próximo (NIR-HI). Como os aditivos são adicionados em baixas concentrações, a técnica do ring-oven foi empregada para concentrá-los previamente à análise por NIR-HI. Anéis foram produzidos a partir de amostras de gasolinas comum adicionadas dos aditivos (denominados G, T, W e Y) fornecidos pela Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP) e as imagens adquiridas utilizando uma câmera hiperespectral (SisuCHEMA). Três estratégias de extração dos espectros do anel foram testadas a fim de se escolher a mais rápida e objetiva. A estratégia escolhida se baseia nos histogramas dos escores da primeira componente principal das imagens analisadas individualmente. Modelos de calibração individuais para cada aditivo foram construídos empregando a regressão por mínimos quadrados parciais (PLS), por isso, fez-se necessária uma etapa prévia de classificação. O melhor resultado para classificação foi obtido empregando a análise discriminante linear (LDA) associada ao algoritmo genético (GA) para seleção de variáveis, o qual apresentou uma taxa de classificações corretas de 92,31 %. Observou-se que a maioria dos erros de classificação envolveram amostras dos aditivos G e W. Um único modelo de regressão para esses dois aditivos foi, então, construído e seu erro foi equivalente aos dos modelos individuais. Os modelos de regressão apresentaram erros médios de predição entre 2 e 15 %. Esses resultados mostram que a metodologia proposta pode ser utilizada para determinar as concentrações dos aditivos com confiabilidade e garantir que eles estão sendo adicionados conforme a lei.
publishDate 2014
dc.date.issued.fl_str_mv 2014-08-25
dc.date.accessioned.fl_str_mv 2016-06-29T11:48:02Z
dc.date.available.fl_str_mv 2016-06-29T11:48:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/17177
dc.identifier.dark.fl_str_mv ark:/64986/001300000gjm5
url https://repositorio.ufpe.br/handle/123456789/17177
identifier_str_mv ark:/64986/001300000gjm5
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Quimica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/17177/5/Disserta%c3%a7%c3%a3o%20de%20Mestrado%20-%20L%c3%advia%20Rodrigues%20e%20Brito.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/17177/1/Disserta%c3%a7%c3%a3o%20de%20Mestrado%20-%20L%c3%advia%20Rodrigues%20e%20Brito.pdf
https://repositorio.ufpe.br/bitstream/123456789/17177/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/17177/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/17177/4/Disserta%c3%a7%c3%a3o%20de%20Mestrado%20-%20L%c3%advia%20Rodrigues%20e%20Brito.pdf.txt
bitstream.checksum.fl_str_mv 5d2c12c5f0c1556d09bc9b5b5ff5614c
cdf56fe284940b9c31e62271753b913f
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
b0f8e304e7b265f388f91790c1f525a7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172818942296064