Inferência e diagnóstico em modelos não lineares Log-Gama generalizados

Detalhes bibliográficos
Autor(a) principal: SILVA, Priscila Gonçalves da
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/00130000064x9
Texto Completo: https://repositorio.ufpe.br/handle/123456789/18637
Resumo: Young e Bakir (1987) propôs a classe de Modelos Lineares Log-Gama Generalizados (MLLGG) para analisar dados de sobrevivência. No nosso trabalho, estendemos a classe de modelos propostapor Young e Bakir (1987) permitindo uma estrutura não linear para os parâmetros de regressão. A nova classe de modelos é denominada como Modelos Não Lineares Log-Gama Generalizados (MNLLGG). Com o objetivo de obter a correção de viés de segunda ordem dos estimadores de máxima verossimilhança (EMV) na classe dos MNLLGG, desenvolvemos uma expressão matricial fechada para o estimador de viés de Cox e Snell (1968). Analisamos, via simulação de Monte Carlo, os desempenhos dos EMV e suas versões corrigidas via Cox e Snell (1968) e através da metodologia bootstrap (Efron, 1979). Propomos também resíduos e técnicas de diagnóstico para os MNLLGG, tais como: alavancagem generalizada, influência local e influência global. Obtivemos, em forma matricial, uma expressão para o fator de correção de Bartlett à estatística da razão de verossimilhanças nesta classe de modelos e desenvolvemos estudos de simulação para avaliar e comparar numericamente o desempenho dos testes da razão de verossimilhanças e suas versões corrigidas em relação ao tamanho e poder em amostras finitas. Além disso, derivamos expressões matriciais para os fatores de correção tipo-Bartlett às estatísticas escore e gradiente. Estudos de simulação foram feitos para avaliar o desempenho dos testes escore, gradiente e suas versões corrigidas no que tange ao tamanho e poder em amostras finitas.
id UFPE_26fce617a3460cc971293cca7f32377e
oai_identifier_str oai:repositorio.ufpe.br:123456789/18637
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling SILVA, Priscila Gonçalves dahttp://lattes.cnpq.br/3349146748887828http://lattes.cnpq.br/3295616000667012CYSNEIROS, Audrey Helen Mariz de Aquino2017-04-25T14:46:06Z2017-04-25T14:46:06Z2016-11-04https://repositorio.ufpe.br/handle/123456789/18637ark:/64986/00130000064x9Young e Bakir (1987) propôs a classe de Modelos Lineares Log-Gama Generalizados (MLLGG) para analisar dados de sobrevivência. No nosso trabalho, estendemos a classe de modelos propostapor Young e Bakir (1987) permitindo uma estrutura não linear para os parâmetros de regressão. A nova classe de modelos é denominada como Modelos Não Lineares Log-Gama Generalizados (MNLLGG). Com o objetivo de obter a correção de viés de segunda ordem dos estimadores de máxima verossimilhança (EMV) na classe dos MNLLGG, desenvolvemos uma expressão matricial fechada para o estimador de viés de Cox e Snell (1968). Analisamos, via simulação de Monte Carlo, os desempenhos dos EMV e suas versões corrigidas via Cox e Snell (1968) e através da metodologia bootstrap (Efron, 1979). Propomos também resíduos e técnicas de diagnóstico para os MNLLGG, tais como: alavancagem generalizada, influência local e influência global. Obtivemos, em forma matricial, uma expressão para o fator de correção de Bartlett à estatística da razão de verossimilhanças nesta classe de modelos e desenvolvemos estudos de simulação para avaliar e comparar numericamente o desempenho dos testes da razão de verossimilhanças e suas versões corrigidas em relação ao tamanho e poder em amostras finitas. Além disso, derivamos expressões matriciais para os fatores de correção tipo-Bartlett às estatísticas escore e gradiente. Estudos de simulação foram feitos para avaliar o desempenho dos testes escore, gradiente e suas versões corrigidas no que tange ao tamanho e poder em amostras finitas.Young e Bakir (1987) proposed the class of generalized log-gamma linear regression models (GLGLM) to analyze survival data. In our work, we extended the class of models proposed by Young e Bakir (1987) considering a nonlinear structure for the regression parameters. The new class of models is called generalized log-gamma nonlinear regression models (GLGNLM). We also propose matrix formula for the second-order bias of the maximum likelihood estimate of the regression parameter vector in the GLGNLM class. We use the results by Cox and Snell (1968) and bootstrap technique [Efron (1979)] to obtain the bias-corrected maximum likelihood estimate. Residuals and diagnostic techniques were proposed for the GLGNLM, such as generalized leverage, local and global influence. An general matrix notation was obtained for the Bartlett correction factor to the likelihood ratio statistic in this class of models. Simulation studies were developed to evaluate and compare numerically the performance of likelihood ratio tests and their corrected versions regarding size and power in finite samples. Furthermore, general matrix expressions were obtained for the Bartlett-type correction factor for the score and gradient statistics. Simulation studies were conducted to evaluate the performance of the score and gradient tests with their corrected versions regarding to the size and power in finite samples.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em EstatisticaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessBootstrapCorreção de BartlettCorreção de viésCorreção tipo-BartlettDistribuição log-gama generalizadaModelo não linearResíduosTécnicas de diagnósticoTeste da razão de verossimilhançasTeste escoreTeste gradienteBartlett correctionBartlett-type correctionBias correctionBootstrapDiagnostic techniquesGeneralized log-gamma distributionGradient testLikelihood ratio testNonlinearmodelResidualScoretestInferência e diagnóstico em modelos não lineares Log-Gama generalizadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE VERSÃO FINAL (CD).pdf.jpgTESE VERSÃO FINAL (CD).pdf.jpgGenerated Thumbnailimage/jpeg1287https://repositorio.ufpe.br/bitstream/123456789/18637/5/TESE%20VERS%c3%83O%20FINAL%20%28CD%29.pdf.jpgb7888fc224eefc408c0c35b1c105d9baMD55ORIGINALTESE VERSÃO FINAL (CD).pdfTESE VERSÃO FINAL (CD).pdfapplication/pdf688894https://repositorio.ufpe.br/bitstream/123456789/18637/1/TESE%20VERS%c3%83O%20FINAL%20%28CD%29.pdffc5c0291423dc50d4989c1c2d8d4af65MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/18637/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/18637/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTESE VERSÃO FINAL (CD).pdf.txtTESE VERSÃO FINAL (CD).pdf.txtExtracted texttext/plain225251https://repositorio.ufpe.br/bitstream/123456789/18637/4/TESE%20VERS%c3%83O%20FINAL%20%28CD%29.pdf.txtce798915d22e56e341341c9572f89009MD54123456789/186372019-10-25 17:31:07.58oai:repositorio.ufpe.br:123456789/18637TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T20:31:07Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Inferência e diagnóstico em modelos não lineares Log-Gama generalizados
title Inferência e diagnóstico em modelos não lineares Log-Gama generalizados
spellingShingle Inferência e diagnóstico em modelos não lineares Log-Gama generalizados
SILVA, Priscila Gonçalves da
Bootstrap
Correção de Bartlett
Correção de viés
Correção tipo-Bartlett
Distribuição log-gama generalizada
Modelo não linear
Resíduos
Técnicas de diagnóstico
Teste da razão de verossimilhanças
Teste escore
Teste gradiente
Bartlett correction
Bartlett-type correction
Bias correction
Bootstrap
Diagnostic techniques
Generalized log-gamma distribution
Gradient test
Likelihood ratio test
Nonlinearmodel
Residual
Scoretest
title_short Inferência e diagnóstico em modelos não lineares Log-Gama generalizados
title_full Inferência e diagnóstico em modelos não lineares Log-Gama generalizados
title_fullStr Inferência e diagnóstico em modelos não lineares Log-Gama generalizados
title_full_unstemmed Inferência e diagnóstico em modelos não lineares Log-Gama generalizados
title_sort Inferência e diagnóstico em modelos não lineares Log-Gama generalizados
author SILVA, Priscila Gonçalves da
author_facet SILVA, Priscila Gonçalves da
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3349146748887828
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3295616000667012
dc.contributor.author.fl_str_mv SILVA, Priscila Gonçalves da
dc.contributor.advisor1.fl_str_mv CYSNEIROS, Audrey Helen Mariz de Aquino
contributor_str_mv CYSNEIROS, Audrey Helen Mariz de Aquino
dc.subject.por.fl_str_mv Bootstrap
Correção de Bartlett
Correção de viés
Correção tipo-Bartlett
Distribuição log-gama generalizada
Modelo não linear
Resíduos
Técnicas de diagnóstico
Teste da razão de verossimilhanças
Teste escore
Teste gradiente
Bartlett correction
Bartlett-type correction
Bias correction
Bootstrap
Diagnostic techniques
Generalized log-gamma distribution
Gradient test
Likelihood ratio test
Nonlinearmodel
Residual
Scoretest
topic Bootstrap
Correção de Bartlett
Correção de viés
Correção tipo-Bartlett
Distribuição log-gama generalizada
Modelo não linear
Resíduos
Técnicas de diagnóstico
Teste da razão de verossimilhanças
Teste escore
Teste gradiente
Bartlett correction
Bartlett-type correction
Bias correction
Bootstrap
Diagnostic techniques
Generalized log-gamma distribution
Gradient test
Likelihood ratio test
Nonlinearmodel
Residual
Scoretest
description Young e Bakir (1987) propôs a classe de Modelos Lineares Log-Gama Generalizados (MLLGG) para analisar dados de sobrevivência. No nosso trabalho, estendemos a classe de modelos propostapor Young e Bakir (1987) permitindo uma estrutura não linear para os parâmetros de regressão. A nova classe de modelos é denominada como Modelos Não Lineares Log-Gama Generalizados (MNLLGG). Com o objetivo de obter a correção de viés de segunda ordem dos estimadores de máxima verossimilhança (EMV) na classe dos MNLLGG, desenvolvemos uma expressão matricial fechada para o estimador de viés de Cox e Snell (1968). Analisamos, via simulação de Monte Carlo, os desempenhos dos EMV e suas versões corrigidas via Cox e Snell (1968) e através da metodologia bootstrap (Efron, 1979). Propomos também resíduos e técnicas de diagnóstico para os MNLLGG, tais como: alavancagem generalizada, influência local e influência global. Obtivemos, em forma matricial, uma expressão para o fator de correção de Bartlett à estatística da razão de verossimilhanças nesta classe de modelos e desenvolvemos estudos de simulação para avaliar e comparar numericamente o desempenho dos testes da razão de verossimilhanças e suas versões corrigidas em relação ao tamanho e poder em amostras finitas. Além disso, derivamos expressões matriciais para os fatores de correção tipo-Bartlett às estatísticas escore e gradiente. Estudos de simulação foram feitos para avaliar o desempenho dos testes escore, gradiente e suas versões corrigidas no que tange ao tamanho e poder em amostras finitas.
publishDate 2016
dc.date.issued.fl_str_mv 2016-11-04
dc.date.accessioned.fl_str_mv 2017-04-25T14:46:06Z
dc.date.available.fl_str_mv 2017-04-25T14:46:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/18637
dc.identifier.dark.fl_str_mv ark:/64986/00130000064x9
url https://repositorio.ufpe.br/handle/123456789/18637
identifier_str_mv ark:/64986/00130000064x9
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Estatistica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/18637/5/TESE%20VERS%c3%83O%20FINAL%20%28CD%29.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/18637/1/TESE%20VERS%c3%83O%20FINAL%20%28CD%29.pdf
https://repositorio.ufpe.br/bitstream/123456789/18637/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/18637/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/18637/4/TESE%20VERS%c3%83O%20FINAL%20%28CD%29.pdf.txt
bitstream.checksum.fl_str_mv b7888fc224eefc408c0c35b1c105d9ba
fc5c0291423dc50d4989c1c2d8d4af65
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
ce798915d22e56e341341c9572f89009
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172736483328000