Um estudo comparativo de técnicas conexionistas na implementação de um sistema de reconhecimento de padrões para um nariz artificial
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000k5pm |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/2502 |
Resumo: | O principal objetivo desta dissertação é fazer um estudo sistemático sobre os diversos tipos de redes neurais artificiais (e seus respectivos algoritmos de aprendizagem) que vêm sendo utilizados na implementação do sistema de reconhecimento de padrões do nariz artificial proposto em [Santos, 2000], apontando suas vantagens e desvantagens. Os modelos analisados são as Multi-layer Perceptrons (MLPs) com o backpropagation, Levenberg-Marquardt e tabu search, e as redes de funções de base radiais (Redes RBF). Também serão investigadas as MLPs com o Resilient backpropagation (Rprop). O algoritmo Rprop foi escolhido por duas razões principais: em geral ele possui um tempo de convergência inferior ao tradicional backpropagation, e até o momento não existe na literatura nenhum trabalho que aplique este algoritmo (junto com as MLPs) como parte do sistema de reconhecimento de padrões do nariz artificial estudado. Para cada modelo de arquitetura (por exemplo, MLP) e algoritmo de treinamento (por exemplo, backpropagation) três topologias diferentes serão investigadas. Para cada uma destas topologias serão feitas trinta inicializações de pesos diferentes (aleatórias), em que cada uma destas inicializações será executada com cada uma das três diferentes partições do conjunto de dados. A partir disto, os resultados obtidos serão analisados através de testes estatísticos (teste de hipóteses). Isto tudo contrasta com os trabalhos anteriores, os quais usavam apenas uma partição dos dados, somente dez execuções para cada topologia, e nenhum teste estatístico era feito |
id |
UFPE_2c0d1698d8e46aa7a8ab0d1c4e20ed57 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/2502 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
ALMEIDA, Marcelo Barbosa deSOUTO, Marcilio Carlos Pereira de2014-06-12T15:58:50Z2014-06-12T15:58:50Z2003Barbosa de Almeida, Marcelo; Carlos Pereira de Souto, Marcilio. Um estudo comparativo de técnicas conexionistas na implementação de um sistema de reconhecimento de padrões para um nariz artificial. 2003. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2003.https://repositorio.ufpe.br/handle/123456789/2502ark:/64986/001300000k5pmO principal objetivo desta dissertação é fazer um estudo sistemático sobre os diversos tipos de redes neurais artificiais (e seus respectivos algoritmos de aprendizagem) que vêm sendo utilizados na implementação do sistema de reconhecimento de padrões do nariz artificial proposto em [Santos, 2000], apontando suas vantagens e desvantagens. Os modelos analisados são as Multi-layer Perceptrons (MLPs) com o backpropagation, Levenberg-Marquardt e tabu search, e as redes de funções de base radiais (Redes RBF). Também serão investigadas as MLPs com o Resilient backpropagation (Rprop). O algoritmo Rprop foi escolhido por duas razões principais: em geral ele possui um tempo de convergência inferior ao tradicional backpropagation, e até o momento não existe na literatura nenhum trabalho que aplique este algoritmo (junto com as MLPs) como parte do sistema de reconhecimento de padrões do nariz artificial estudado. Para cada modelo de arquitetura (por exemplo, MLP) e algoritmo de treinamento (por exemplo, backpropagation) três topologias diferentes serão investigadas. Para cada uma destas topologias serão feitas trinta inicializações de pesos diferentes (aleatórias), em que cada uma destas inicializações será executada com cada uma das três diferentes partições do conjunto de dados. A partir disto, os resultados obtidos serão analisados através de testes estatísticos (teste de hipóteses). Isto tudo contrasta com os trabalhos anteriores, os quais usavam apenas uma partição dos dados, somente dez execuções para cada topologia, e nenhum teste estatístico era feitoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessRedes Neurais ArtificiaisNariz ArtificialReconhecimento de PadrõesUm estudo comparativo de técnicas conexionistas na implementação de um sistema de reconhecimento de padrões para um nariz artificialinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo4731_1.pdf.jpgarquivo4731_1.pdf.jpgGenerated Thumbnailimage/jpeg1284https://repositorio.ufpe.br/bitstream/123456789/2502/4/arquivo4731_1.pdf.jpg59a09c91724c32bc2560083c42fcc5a7MD54ORIGINALarquivo4731_1.pdfapplication/pdf619591https://repositorio.ufpe.br/bitstream/123456789/2502/1/arquivo4731_1.pdfee2b5c5d8be35ac18eb8d163b05f0c3aMD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/2502/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo4731_1.pdf.txtarquivo4731_1.pdf.txtExtracted texttext/plain182115https://repositorio.ufpe.br/bitstream/123456789/2502/3/arquivo4731_1.pdf.txt12d940a8c00f2f5f5449ea5b8db12437MD53123456789/25022019-10-25 03:25:52.806oai:repositorio.ufpe.br:123456789/2502Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T06:25:52Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Um estudo comparativo de técnicas conexionistas na implementação de um sistema de reconhecimento de padrões para um nariz artificial |
title |
Um estudo comparativo de técnicas conexionistas na implementação de um sistema de reconhecimento de padrões para um nariz artificial |
spellingShingle |
Um estudo comparativo de técnicas conexionistas na implementação de um sistema de reconhecimento de padrões para um nariz artificial ALMEIDA, Marcelo Barbosa de Redes Neurais Artificiais Nariz Artificial Reconhecimento de Padrões |
title_short |
Um estudo comparativo de técnicas conexionistas na implementação de um sistema de reconhecimento de padrões para um nariz artificial |
title_full |
Um estudo comparativo de técnicas conexionistas na implementação de um sistema de reconhecimento de padrões para um nariz artificial |
title_fullStr |
Um estudo comparativo de técnicas conexionistas na implementação de um sistema de reconhecimento de padrões para um nariz artificial |
title_full_unstemmed |
Um estudo comparativo de técnicas conexionistas na implementação de um sistema de reconhecimento de padrões para um nariz artificial |
title_sort |
Um estudo comparativo de técnicas conexionistas na implementação de um sistema de reconhecimento de padrões para um nariz artificial |
author |
ALMEIDA, Marcelo Barbosa de |
author_facet |
ALMEIDA, Marcelo Barbosa de |
author_role |
author |
dc.contributor.author.fl_str_mv |
ALMEIDA, Marcelo Barbosa de |
dc.contributor.advisor1.fl_str_mv |
SOUTO, Marcilio Carlos Pereira de |
contributor_str_mv |
SOUTO, Marcilio Carlos Pereira de |
dc.subject.por.fl_str_mv |
Redes Neurais Artificiais Nariz Artificial Reconhecimento de Padrões |
topic |
Redes Neurais Artificiais Nariz Artificial Reconhecimento de Padrões |
description |
O principal objetivo desta dissertação é fazer um estudo sistemático sobre os diversos tipos de redes neurais artificiais (e seus respectivos algoritmos de aprendizagem) que vêm sendo utilizados na implementação do sistema de reconhecimento de padrões do nariz artificial proposto em [Santos, 2000], apontando suas vantagens e desvantagens. Os modelos analisados são as Multi-layer Perceptrons (MLPs) com o backpropagation, Levenberg-Marquardt e tabu search, e as redes de funções de base radiais (Redes RBF). Também serão investigadas as MLPs com o Resilient backpropagation (Rprop). O algoritmo Rprop foi escolhido por duas razões principais: em geral ele possui um tempo de convergência inferior ao tradicional backpropagation, e até o momento não existe na literatura nenhum trabalho que aplique este algoritmo (junto com as MLPs) como parte do sistema de reconhecimento de padrões do nariz artificial estudado. Para cada modelo de arquitetura (por exemplo, MLP) e algoritmo de treinamento (por exemplo, backpropagation) três topologias diferentes serão investigadas. Para cada uma destas topologias serão feitas trinta inicializações de pesos diferentes (aleatórias), em que cada uma destas inicializações será executada com cada uma das três diferentes partições do conjunto de dados. A partir disto, os resultados obtidos serão analisados através de testes estatísticos (teste de hipóteses). Isto tudo contrasta com os trabalhos anteriores, os quais usavam apenas uma partição dos dados, somente dez execuções para cada topologia, e nenhum teste estatístico era feito |
publishDate |
2003 |
dc.date.issued.fl_str_mv |
2003 |
dc.date.accessioned.fl_str_mv |
2014-06-12T15:58:50Z |
dc.date.available.fl_str_mv |
2014-06-12T15:58:50Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Barbosa de Almeida, Marcelo; Carlos Pereira de Souto, Marcilio. Um estudo comparativo de técnicas conexionistas na implementação de um sistema de reconhecimento de padrões para um nariz artificial. 2003. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2003. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/2502 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000k5pm |
identifier_str_mv |
Barbosa de Almeida, Marcelo; Carlos Pereira de Souto, Marcilio. Um estudo comparativo de técnicas conexionistas na implementação de um sistema de reconhecimento de padrões para um nariz artificial. 2003. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2003. ark:/64986/001300000k5pm |
url |
https://repositorio.ufpe.br/handle/123456789/2502 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/2502/4/arquivo4731_1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/2502/1/arquivo4731_1.pdf https://repositorio.ufpe.br/bitstream/123456789/2502/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/2502/3/arquivo4731_1.pdf.txt |
bitstream.checksum.fl_str_mv |
59a09c91724c32bc2560083c42fcc5a7 ee2b5c5d8be35ac18eb8d163b05f0c3a 8a4605be74aa9ea9d79846c1fba20a33 12d940a8c00f2f5f5449ea5b8db12437 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172844704759808 |