The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000vsvp |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/34516 |
Resumo: | Knowledge Discovery in Databases (KDD) is a broad area in Artificial Intelligence concerned with the extraction of useful information and insights from a given dataset. Among the distinct extraction methodologies, an important subclass of KDD tasks, called Subgroup Discovery (SD), undertakes the discovery of interesting subsets in the data. Many Evolutionary Algorithms (EAs) have been proposed to solve the Subgroup Discovery task with considerable success in low dimensional datasets. Some of these, however, have been shown to perform poorly in high dimensional problems. The currently best performing Evolutionary Algorithm for Subgroup Discovery in high dimensional datasets, SSDP, has a peculiar way of initializing its populations, limiting the individuals to the smallest possible size. As with most population-based techniques, the outcome of an Evolutionary Algorithm is usually dependent on the initial set of solutions, which are typically generated at random. The impact of choosing one initialization technique over another in the final presented solution has been the topic of many published works in the broad area of evolutionary computation. Despite this, there is still a lack of studies which approach this topic in the specific scenario of Subgroup Discovery tasks, especially when considering high dimensional datasets. The ultimate goal of this research project is to evaluate the impact of initial population generation in the end result of the overall Evolutionary Algorithm used to solve a Subgroup Discovery task in high dimensional data. Specifically, we provide new initialization methods, designed for the specific characteristics of Subgroup Discovery tasks, which can be used in virtually any EA. Our conducted experiments show that, by just changing the initialization method, state of the art Evolutionary Algorithms have their performance increased in high dimensional datasets. |
id |
UFPE_2d459d73bbd1fda0f260f664566be57d |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/34516 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
TORREÃO, Vítor de Albuquerquehttp://lattes.cnpq.br/8574157197594723http://lattes.cnpq.br/5736183954752317VIMIEIRO, Renato2019-10-11T19:49:06Z2019-10-11T19:49:06Z2019-03-15https://repositorio.ufpe.br/handle/123456789/34516ark:/64986/001300000vsvpKnowledge Discovery in Databases (KDD) is a broad area in Artificial Intelligence concerned with the extraction of useful information and insights from a given dataset. Among the distinct extraction methodologies, an important subclass of KDD tasks, called Subgroup Discovery (SD), undertakes the discovery of interesting subsets in the data. Many Evolutionary Algorithms (EAs) have been proposed to solve the Subgroup Discovery task with considerable success in low dimensional datasets. Some of these, however, have been shown to perform poorly in high dimensional problems. The currently best performing Evolutionary Algorithm for Subgroup Discovery in high dimensional datasets, SSDP, has a peculiar way of initializing its populations, limiting the individuals to the smallest possible size. As with most population-based techniques, the outcome of an Evolutionary Algorithm is usually dependent on the initial set of solutions, which are typically generated at random. The impact of choosing one initialization technique over another in the final presented solution has been the topic of many published works in the broad area of evolutionary computation. Despite this, there is still a lack of studies which approach this topic in the specific scenario of Subgroup Discovery tasks, especially when considering high dimensional datasets. The ultimate goal of this research project is to evaluate the impact of initial population generation in the end result of the overall Evolutionary Algorithm used to solve a Subgroup Discovery task in high dimensional data. Specifically, we provide new initialization methods, designed for the specific characteristics of Subgroup Discovery tasks, which can be used in virtually any EA. Our conducted experiments show that, by just changing the initialization method, state of the art Evolutionary Algorithms have their performance increased in high dimensional datasets.Descoberta de Conhecimento em Bases de Dados (KDD) é uma área ampla em Inteligência Artificial que se preocupa com a extração de informações e insights úteis a partir de um conjunto de dados. Dentre as diferentes metodologias de extração, uma importante subclasse de tarefas de KDD, chamada de Descoberta de Subgrupos (SD), lida com a descoberta de subconjuntos interessantes dentro dos dados. Vários Algoritmos Evolucionários (EAs) foram propostos para resolver a tarefa de descobrir subgrupos com sucesso considerável em bases de dados de baixa dimensionalidade. A literatura já mostrou, no entanto, que alguns desses tem uma performance baixa em problemas de alta dimensionalidade. O algoritmo evolucionário para descoberta de subgrupos com, atualmente, a melhor performance em bases de alta dimensionalidade, SSDP, possui uma forma peculiar de inicializar sua população, limitando os indivíduos ao menor tamanho possível. Assim como na maioria das técnicas baseadas em população, o resultado de um algoritmo evolucionário é, em geral, dependente do conjunto de soluções inicial, que é tipicamente gerado de forma aleatória. Escolher uma técnica de inicialização sob outra tem grande impacto na solução final apresentada, e este já foi o tópico de trabalhos publicados na área de computação evolucionária. Apesar disso, faltam trabalhos que estudem este tópico no caso específico de descoberta de subgrupos, especialmente quando são consideradas bases de alta dimensionalidade. O objetivo final desta pesquisa é avaliar o impacto da geração da população inicial no resultado final de um algoritmo evolucionário no contexto de uma tarefa de descoberta de subgrupos em dados de alta dimensionalidade. Especificamente, são apresentados novos métodos de inicialização, projetados para as características específicas de tarefas de descoberta de subgrupos, que podem ser utilizadas em praticamente qualquer algoritmo evolucionário. Os experimentos conduzidos mostram que mudar o método de inicialização é o suficiente para aumentar a performance de algoritmos evolucionários o estado da arte em bases de dados de alta dimensionalidade.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessInteligência artificialAprendizagem de máquinaMineração de dadosThe population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasetsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Vitor de Albuquerque Torreão.pdf.jpgDISSERTAÇÃO Vitor de Albuquerque Torreão.pdf.jpgGenerated Thumbnailimage/jpeg1269https://repositorio.ufpe.br/bitstream/123456789/34516/5/DISSERTA%c3%87%c3%83O%20Vitor%20de%20Albuquerque%20Torre%c3%a3o.pdf.jpg966482f8dec3ca85a1819cd0c00bd58aMD55ORIGINALDISSERTAÇÃO Vitor de Albuquerque Torreão.pdfDISSERTAÇÃO Vitor de Albuquerque Torreão.pdfapplication/pdf843130https://repositorio.ufpe.br/bitstream/123456789/34516/1/DISSERTA%c3%87%c3%83O%20Vitor%20de%20Albuquerque%20Torre%c3%a3o.pdf080c38115ebbc80b72388d7cf3cd8973MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/34516/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/34516/3/license.txtbd573a5ca8288eb7272482765f819534MD53TEXTDISSERTAÇÃO Vitor de Albuquerque Torreão.pdf.txtDISSERTAÇÃO Vitor de Albuquerque Torreão.pdf.txtExtracted texttext/plain140095https://repositorio.ufpe.br/bitstream/123456789/34516/4/DISSERTA%c3%87%c3%83O%20Vitor%20de%20Albuquerque%20Torre%c3%a3o.pdf.txt8d294390f9d21fc0a6ec668b78b63434MD54123456789/345162019-10-25 11:12:58.711oai:repositorio.ufpe.br:123456789/34516TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T14:12:58Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets |
title |
The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets |
spellingShingle |
The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets TORREÃO, Vítor de Albuquerque Inteligência artificial Aprendizagem de máquina Mineração de dados |
title_short |
The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets |
title_full |
The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets |
title_fullStr |
The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets |
title_full_unstemmed |
The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets |
title_sort |
The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets |
author |
TORREÃO, Vítor de Albuquerque |
author_facet |
TORREÃO, Vítor de Albuquerque |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/8574157197594723 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/5736183954752317 |
dc.contributor.author.fl_str_mv |
TORREÃO, Vítor de Albuquerque |
dc.contributor.advisor1.fl_str_mv |
VIMIEIRO, Renato |
contributor_str_mv |
VIMIEIRO, Renato |
dc.subject.por.fl_str_mv |
Inteligência artificial Aprendizagem de máquina Mineração de dados |
topic |
Inteligência artificial Aprendizagem de máquina Mineração de dados |
description |
Knowledge Discovery in Databases (KDD) is a broad area in Artificial Intelligence concerned with the extraction of useful information and insights from a given dataset. Among the distinct extraction methodologies, an important subclass of KDD tasks, called Subgroup Discovery (SD), undertakes the discovery of interesting subsets in the data. Many Evolutionary Algorithms (EAs) have been proposed to solve the Subgroup Discovery task with considerable success in low dimensional datasets. Some of these, however, have been shown to perform poorly in high dimensional problems. The currently best performing Evolutionary Algorithm for Subgroup Discovery in high dimensional datasets, SSDP, has a peculiar way of initializing its populations, limiting the individuals to the smallest possible size. As with most population-based techniques, the outcome of an Evolutionary Algorithm is usually dependent on the initial set of solutions, which are typically generated at random. The impact of choosing one initialization technique over another in the final presented solution has been the topic of many published works in the broad area of evolutionary computation. Despite this, there is still a lack of studies which approach this topic in the specific scenario of Subgroup Discovery tasks, especially when considering high dimensional datasets. The ultimate goal of this research project is to evaluate the impact of initial population generation in the end result of the overall Evolutionary Algorithm used to solve a Subgroup Discovery task in high dimensional data. Specifically, we provide new initialization methods, designed for the specific characteristics of Subgroup Discovery tasks, which can be used in virtually any EA. Our conducted experiments show that, by just changing the initialization method, state of the art Evolutionary Algorithms have their performance increased in high dimensional datasets. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-10-11T19:49:06Z |
dc.date.available.fl_str_mv |
2019-10-11T19:49:06Z |
dc.date.issued.fl_str_mv |
2019-03-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/34516 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000vsvp |
url |
https://repositorio.ufpe.br/handle/123456789/34516 |
identifier_str_mv |
ark:/64986/001300000vsvp |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
embargoedAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/34516/5/DISSERTA%c3%87%c3%83O%20Vitor%20de%20Albuquerque%20Torre%c3%a3o.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/34516/1/DISSERTA%c3%87%c3%83O%20Vitor%20de%20Albuquerque%20Torre%c3%a3o.pdf https://repositorio.ufpe.br/bitstream/123456789/34516/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/34516/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/34516/4/DISSERTA%c3%87%c3%83O%20Vitor%20de%20Albuquerque%20Torre%c3%a3o.pdf.txt |
bitstream.checksum.fl_str_mv |
966482f8dec3ca85a1819cd0c00bd58a 080c38115ebbc80b72388d7cf3cd8973 e39d27027a6cc9cb039ad269a5db8e34 bd573a5ca8288eb7272482765f819534 8d294390f9d21fc0a6ec668b78b63434 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172928160923648 |