Uso da espectroscopia no infravermelho próximo (NIR) para a avaliação de parâmetros de qualidade de farinha de mandioca
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000cmr5 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/12455 |
Resumo: | A espectroscopia no infravermelho próximo associada à quimiometria tem sido empregada para a análise de diferentes amostras. Este trabalho teve como principal objetivo o desenvolvimento de metodologias analíticas multivariadas orientadas a análise de farinhas de mandioca de diferentes regiões do Brasil utilizando-se da espectroscopia de infravermelho próximo (NIR). Os parâmetros de qualidade: cinzas, umidade, e pH foram determinados pelos métodos físico-químicos da AOAC (1995) e do Instituto Adolf Lutz (1985). Os espectros no infravermelho próximo foram adquiridos na faixa de 10000 a 4000 cm-1. Os modelos de calibração foram desenvolvidos utilizando setenta e duas amostras de farinha correlacionando os dados físico-químicos com os espectros NIR por Regressão por Mínimos Quadrados Parciais - PLS, Regressão por Mínimos Quadrados Parciais com coeficientes de regressão selecionados pelo algoritmo Jack-Knife - PLS/JK e Regressão Linear Múltipla com seleção de variáveis pelo Algoritmo das Projeções Sucessivas - MLR/SPA. A capacidade preditiva dos modelos foi avaliada por validação externa, utilizando um conjunto de trinta e cinco amostras que não fizeram parte da modelagem. Os modelos foram testados utilizando diferentes pré-processamentos. A análise de componentes principais (PCA) não permitiu a discriminação das amostras de farinha em função do estado de origem. Quanto aos modelos de calibração e validação, para determinação do teor de umidade, o melhor modelo foi obtido utilizando a correção multiplicativa de sinal (MSC), com RMSEP igual a 0,39%. Para a determinação do pH, o melhor modelo foi obtido empregando a primeira derivada com filtro de Savitzky Golay com janela de 21 pontos, com RMSEP igual a 0,29 . Para a determinação do teor de cinzas, o melhor modelo empregou o MSC, com RMSEP igual 0,11%. As vantagens do emprego dessa técnica são a simplicidade, a rapidez e a ausência de resíduos químicos, os quais são geralmente gerados pelos métodos tradicionais de análises. |
id |
UFPE_2f9b2bcd6492fd142ba3b7da74560130 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/12455 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Folha, Thaisa OliveiraPaim, Ana Paula Silveira Pereira, Claudete Fernandes 2015-03-13T14:23:26Z2015-03-13T14:23:26Z2014-01-31https://repositorio.ufpe.br/handle/123456789/12455ark:/64986/001300000cmr5A espectroscopia no infravermelho próximo associada à quimiometria tem sido empregada para a análise de diferentes amostras. Este trabalho teve como principal objetivo o desenvolvimento de metodologias analíticas multivariadas orientadas a análise de farinhas de mandioca de diferentes regiões do Brasil utilizando-se da espectroscopia de infravermelho próximo (NIR). Os parâmetros de qualidade: cinzas, umidade, e pH foram determinados pelos métodos físico-químicos da AOAC (1995) e do Instituto Adolf Lutz (1985). Os espectros no infravermelho próximo foram adquiridos na faixa de 10000 a 4000 cm-1. Os modelos de calibração foram desenvolvidos utilizando setenta e duas amostras de farinha correlacionando os dados físico-químicos com os espectros NIR por Regressão por Mínimos Quadrados Parciais - PLS, Regressão por Mínimos Quadrados Parciais com coeficientes de regressão selecionados pelo algoritmo Jack-Knife - PLS/JK e Regressão Linear Múltipla com seleção de variáveis pelo Algoritmo das Projeções Sucessivas - MLR/SPA. A capacidade preditiva dos modelos foi avaliada por validação externa, utilizando um conjunto de trinta e cinco amostras que não fizeram parte da modelagem. Os modelos foram testados utilizando diferentes pré-processamentos. A análise de componentes principais (PCA) não permitiu a discriminação das amostras de farinha em função do estado de origem. Quanto aos modelos de calibração e validação, para determinação do teor de umidade, o melhor modelo foi obtido utilizando a correção multiplicativa de sinal (MSC), com RMSEP igual a 0,39%. Para a determinação do pH, o melhor modelo foi obtido empregando a primeira derivada com filtro de Savitzky Golay com janela de 21 pontos, com RMSEP igual a 0,29 . Para a determinação do teor de cinzas, o melhor modelo empregou o MSC, com RMSEP igual 0,11%. As vantagens do emprego dessa técnica são a simplicidade, a rapidez e a ausência de resíduos químicos, os quais são geralmente gerados pelos métodos tradicionais de análises.CAPESporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFarinha de mandiocaEspectroscopia no infravermelho próximo (NIR)Calibração multivariadaUso da espectroscopia no infravermelho próximo (NIR) para a avaliação de parâmetros de qualidade de farinha de mandiocainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Thaisa Oliveira Folha.pdf.jpgDISSERTAÇÃO Thaisa Oliveira Folha.pdf.jpgGenerated Thumbnailimage/jpeg1297https://repositorio.ufpe.br/bitstream/123456789/12455/5/DISSERTA%c3%87%c3%83O%20Thaisa%20Oliveira%20Folha.pdf.jpgdbd990a63dc10a3abbc179ed6ce92426MD55ORIGINALDISSERTAÇÃO Thaisa Oliveira Folha.pdfDISSERTAÇÃO Thaisa Oliveira Folha.pdfapplication/pdf2690188https://repositorio.ufpe.br/bitstream/123456789/12455/1/DISSERTA%c3%87%c3%83O%20Thaisa%20Oliveira%20Folha.pdff6f0af85773e3da36ad0aa091cc67576MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/12455/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/12455/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDISSERTAÇÃO Thaisa Oliveira Folha.pdf.txtDISSERTAÇÃO Thaisa Oliveira Folha.pdf.txtExtracted texttext/plain137079https://repositorio.ufpe.br/bitstream/123456789/12455/4/DISSERTA%c3%87%c3%83O%20Thaisa%20Oliveira%20Folha.pdf.txt957c15f8bafb2c4ff75c04192af795ffMD54123456789/124552019-10-25 04:59:29.963oai:repositorio.ufpe.br:123456789/12455TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:59:29Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Uso da espectroscopia no infravermelho próximo (NIR) para a avaliação de parâmetros de qualidade de farinha de mandioca |
title |
Uso da espectroscopia no infravermelho próximo (NIR) para a avaliação de parâmetros de qualidade de farinha de mandioca |
spellingShingle |
Uso da espectroscopia no infravermelho próximo (NIR) para a avaliação de parâmetros de qualidade de farinha de mandioca Folha, Thaisa Oliveira Farinha de mandioca Espectroscopia no infravermelho próximo (NIR) Calibração multivariada |
title_short |
Uso da espectroscopia no infravermelho próximo (NIR) para a avaliação de parâmetros de qualidade de farinha de mandioca |
title_full |
Uso da espectroscopia no infravermelho próximo (NIR) para a avaliação de parâmetros de qualidade de farinha de mandioca |
title_fullStr |
Uso da espectroscopia no infravermelho próximo (NIR) para a avaliação de parâmetros de qualidade de farinha de mandioca |
title_full_unstemmed |
Uso da espectroscopia no infravermelho próximo (NIR) para a avaliação de parâmetros de qualidade de farinha de mandioca |
title_sort |
Uso da espectroscopia no infravermelho próximo (NIR) para a avaliação de parâmetros de qualidade de farinha de mandioca |
author |
Folha, Thaisa Oliveira |
author_facet |
Folha, Thaisa Oliveira |
author_role |
author |
dc.contributor.author.fl_str_mv |
Folha, Thaisa Oliveira |
dc.contributor.advisor1.fl_str_mv |
Paim, Ana Paula Silveira |
dc.contributor.advisor-co1.fl_str_mv |
Pereira, Claudete Fernandes |
contributor_str_mv |
Paim, Ana Paula Silveira Pereira, Claudete Fernandes |
dc.subject.por.fl_str_mv |
Farinha de mandioca Espectroscopia no infravermelho próximo (NIR) Calibração multivariada |
topic |
Farinha de mandioca Espectroscopia no infravermelho próximo (NIR) Calibração multivariada |
description |
A espectroscopia no infravermelho próximo associada à quimiometria tem sido empregada para a análise de diferentes amostras. Este trabalho teve como principal objetivo o desenvolvimento de metodologias analíticas multivariadas orientadas a análise de farinhas de mandioca de diferentes regiões do Brasil utilizando-se da espectroscopia de infravermelho próximo (NIR). Os parâmetros de qualidade: cinzas, umidade, e pH foram determinados pelos métodos físico-químicos da AOAC (1995) e do Instituto Adolf Lutz (1985). Os espectros no infravermelho próximo foram adquiridos na faixa de 10000 a 4000 cm-1. Os modelos de calibração foram desenvolvidos utilizando setenta e duas amostras de farinha correlacionando os dados físico-químicos com os espectros NIR por Regressão por Mínimos Quadrados Parciais - PLS, Regressão por Mínimos Quadrados Parciais com coeficientes de regressão selecionados pelo algoritmo Jack-Knife - PLS/JK e Regressão Linear Múltipla com seleção de variáveis pelo Algoritmo das Projeções Sucessivas - MLR/SPA. A capacidade preditiva dos modelos foi avaliada por validação externa, utilizando um conjunto de trinta e cinco amostras que não fizeram parte da modelagem. Os modelos foram testados utilizando diferentes pré-processamentos. A análise de componentes principais (PCA) não permitiu a discriminação das amostras de farinha em função do estado de origem. Quanto aos modelos de calibração e validação, para determinação do teor de umidade, o melhor modelo foi obtido utilizando a correção multiplicativa de sinal (MSC), com RMSEP igual a 0,39%. Para a determinação do pH, o melhor modelo foi obtido empregando a primeira derivada com filtro de Savitzky Golay com janela de 21 pontos, com RMSEP igual a 0,29 . Para a determinação do teor de cinzas, o melhor modelo empregou o MSC, com RMSEP igual 0,11%. As vantagens do emprego dessa técnica são a simplicidade, a rapidez e a ausência de resíduos químicos, os quais são geralmente gerados pelos métodos tradicionais de análises. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-01-31 |
dc.date.accessioned.fl_str_mv |
2015-03-13T14:23:26Z |
dc.date.available.fl_str_mv |
2015-03-13T14:23:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/12455 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000cmr5 |
url |
https://repositorio.ufpe.br/handle/123456789/12455 |
identifier_str_mv |
ark:/64986/001300000cmr5 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/12455/5/DISSERTA%c3%87%c3%83O%20Thaisa%20Oliveira%20Folha.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/12455/1/DISSERTA%c3%87%c3%83O%20Thaisa%20Oliveira%20Folha.pdf https://repositorio.ufpe.br/bitstream/123456789/12455/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/12455/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/12455/4/DISSERTA%c3%87%c3%83O%20Thaisa%20Oliveira%20Folha.pdf.txt |
bitstream.checksum.fl_str_mv |
dbd990a63dc10a3abbc179ed6ce92426 f6f0af85773e3da36ad0aa091cc67576 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 957c15f8bafb2c4ff75c04192af795ff |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172790072901632 |