Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000krrt |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/49492 |
Resumo: | Fluid flow in fractured porous media is a very relevant phenomenon, since most of the remaining oil reserves in the world reside in this type of formations, in addition to the fact that fractures are also present in shallower layers of the crust, which makes them influential also in water extraction and waste dispersion. The two-phase flow of oil and water in reservoirs can be mathematically described by a set of non-linear partial differential equations, whose modeling constitutes a great challenge, due to the complexity of the depositional environments, in addition to the presence of fractures. In these cases, it is particularly complex to construct structured computational meshes capable of adequately representing the reservoir. In the present work, a new strategy was developed to simulate immiscible two-phase flow in 3-D fractured porous media, using tetrahedral unstructured meshes. Such a strategy is based on a finite volume method with multipoint flux approximation that uses the so-called "diamond stencil" (MPFA-D), considering a projection-based embedded discrete fracture model (pEDFM) to include the influences of the fractures in the global reservoir model. The MPFA-D is a robust and flexible formulation, capable of handling highly heterogeneous, possibly discontinuous, and anisotropic, even non-orthotropic, diffusion tensors, and which achieves second- order convergence rates for the scalar variable and first-order convergence rates for its gradient. However, like other linear MPFA methods, it does not formally guarantee monotonic solutions or those that respect the Discrete Maximum Principle (DMP) and can produce spurious oscillations in the pressure field for permeability tensors with high anisotropy ratio or for distorted meshes. To deal with this problem and enforce DMP compliance, an alternative non-linear defect correction for MPFA-D was developed. Furthermore, the adopted fracture model avoids the additional complexity of aligning fractures with edges or faces of the computational mesh that discretizes the domain corresponding to the porous medium, making the construction of this mesh more flexible and less susceptible to excessive localized refinements. The saturation terms of the mathematical model are discretized according to the backward Euler method, in the context of a fully implicit numerical scheme. The proposed numerical methods, as well as the simulator composed by them, were tested against problems found in the literature and others elaborated by the author, aiming to demonstrate the robustness and flexibility of the developed computational simulation tool. |
id |
UFPE_3030412d21bb7f591707c24ac1bbf677 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/49492 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
CAVALCANTE, Túlio de Mourahttp://lattes.cnpq.br/8867705542362809http://lattes.cnpq.br/6568615406054840http://lattes.cnpq.br/9033828541812842LYRA, Paulo Roberto MacielCARVALHO, Darlan Karlo Elisiário de2023-03-27T14:14:52Z2023-03-27T14:14:52Z2023-03-10CAVALCANTE, Túlio de Moura. Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes. 2023. Tese (Doutorado em Engenharia Civil) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/49492ark:/64986/001300000krrtFluid flow in fractured porous media is a very relevant phenomenon, since most of the remaining oil reserves in the world reside in this type of formations, in addition to the fact that fractures are also present in shallower layers of the crust, which makes them influential also in water extraction and waste dispersion. The two-phase flow of oil and water in reservoirs can be mathematically described by a set of non-linear partial differential equations, whose modeling constitutes a great challenge, due to the complexity of the depositional environments, in addition to the presence of fractures. In these cases, it is particularly complex to construct structured computational meshes capable of adequately representing the reservoir. In the present work, a new strategy was developed to simulate immiscible two-phase flow in 3-D fractured porous media, using tetrahedral unstructured meshes. Such a strategy is based on a finite volume method with multipoint flux approximation that uses the so-called "diamond stencil" (MPFA-D), considering a projection-based embedded discrete fracture model (pEDFM) to include the influences of the fractures in the global reservoir model. The MPFA-D is a robust and flexible formulation, capable of handling highly heterogeneous, possibly discontinuous, and anisotropic, even non-orthotropic, diffusion tensors, and which achieves second- order convergence rates for the scalar variable and first-order convergence rates for its gradient. However, like other linear MPFA methods, it does not formally guarantee monotonic solutions or those that respect the Discrete Maximum Principle (DMP) and can produce spurious oscillations in the pressure field for permeability tensors with high anisotropy ratio or for distorted meshes. To deal with this problem and enforce DMP compliance, an alternative non-linear defect correction for MPFA-D was developed. Furthermore, the adopted fracture model avoids the additional complexity of aligning fractures with edges or faces of the computational mesh that discretizes the domain corresponding to the porous medium, making the construction of this mesh more flexible and less susceptible to excessive localized refinements. The saturation terms of the mathematical model are discretized according to the backward Euler method, in the context of a fully implicit numerical scheme. The proposed numerical methods, as well as the simulator composed by them, were tested against problems found in the literature and others elaborated by the author, aiming to demonstrate the robustness and flexibility of the developed computational simulation tool.FACEPEO escoamento de fluidos em meios porosos fraturados é um fenômeno muito relevante, pois a maior parte das reservas de petróleo remanescentes no mundo residem neste tipo de formações, além de as fraturas também estarem presentes em camadas menos profundas da crosta, o que as torna influentes também na extração de água e na dispersão de resíduos. O escoamento bifásico de água e óleo em reservatórios pode ser descrito matematicamente por um conjunto de equações diferenciais parciais não-lineares, cuja modelagem constitui-se num grande desafio, devido à complexidade dos ambientes deposicionais, além da presença das fraturas. Nesses casos, é particularmente complexo construir malhas computacionais estruturadas capazes de representar adequadamente o reservatório. No presente trabalho, uma nova estratégia foi desenvolvida para simular o escoamento bifásico imiscível em meios porosos fraturados 3-D, usando malhas não- estruturadas tetraédricas. Tal estratégia é baseada em um método de volumes finitos com aproximação de fluxo por múltiplos pontos que utiliza o chamado "estêncil de diamante" (MPFA-D), considerando um modelo de fratura discreta embutida baseado em projeção (pEDFM) para incluir as influências das fraturas no modelo global do reservatório. O MPFA-D é uma formulação robusta e flexível, capaz de lidar com tensores de difusão altamente heterogêneos, possivelmente descontínuos, e anisotrópicos, inclusive não- ortotrópicos, e que alcança taxas de convergência de segunda ordem para a variável escalar e de primeira ordem para o seu gradiente. No entanto, como outros métodos MPFA lineares, ele não garante formalmente soluções monótonas ou que respeitem o Princípio do Máximo Discreto (DMP) e pode produzir oscilações espúrias no campo de pressão para tensores de permeabilidade com razão de anisotropia elevada ou para malhas distorcidas. Para lidar com este problema e impor a observância do DMP, foi desenvolvida uma alternativa de correção não-linear para o MPFA-D. Além disso, o modelo de fratura adotado evita a complexidade adicional de alinhar fraturas com arestas ou faces da malha computacional que discretiza o domínio correspondente ao meio poroso, tornando a construção dessa malha mais flexível e menos suscetível a refinamentos localizados excessivos. Os termos de saturação do modelo matemático são discretizados segundo o método de Euler avançado, no contexto de um esquema numérico totalmente implícito. Os métodos numéricos propostos, bem como o simulador composto por eles, foram testados frente a problemas encontrados na literatura e outros elaborados pelo autor, visando demonstrar a robustez e a flexibilidade da ferramenta de simulação computacional desenvolvida.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia CivilUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEngenharia civilSimulação numéricaEscoamento bifásico de água e óleoReservatórios heterogêneos e anisotrópicosReservatórios fraturadospEDFMMPFA-DDMPSimulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE Túlio de Moura Cavalcante.pdfTESE Túlio de Moura Cavalcante.pdfapplication/pdf3634813https://repositorio.ufpe.br/bitstream/123456789/49492/1/TESE%20T%c3%balio%20de%20Moura%20Cavalcante.pdf09e44bb91693db7ab684a79e4653d132MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/49492/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/49492/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTTESE Túlio de Moura Cavalcante.pdf.txtTESE Túlio de Moura Cavalcante.pdf.txtExtracted texttext/plain250352https://repositorio.ufpe.br/bitstream/123456789/49492/4/TESE%20T%c3%balio%20de%20Moura%20Cavalcante.pdf.txt1cc6d6bc57726f58f83061ca7241bb2aMD54THUMBNAILTESE Túlio de Moura Cavalcante.pdf.jpgTESE Túlio de Moura Cavalcante.pdf.jpgGenerated Thumbnailimage/jpeg1235https://repositorio.ufpe.br/bitstream/123456789/49492/5/TESE%20T%c3%balio%20de%20Moura%20Cavalcante.pdf.jpgabc0590ecda4d01e5453d93f85bda080MD55123456789/494922023-03-28 02:14:01.908oai:repositorio.ufpe.br:123456789/49492VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-03-28T05:14:01Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes |
title |
Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes |
spellingShingle |
Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes CAVALCANTE, Túlio de Moura Engenharia civil Simulação numérica Escoamento bifásico de água e óleo Reservatórios heterogêneos e anisotrópicos Reservatórios fraturados pEDFM MPFA-D DMP |
title_short |
Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes |
title_full |
Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes |
title_fullStr |
Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes |
title_full_unstemmed |
Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes |
title_sort |
Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes |
author |
CAVALCANTE, Túlio de Moura |
author_facet |
CAVALCANTE, Túlio de Moura |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/8867705542362809 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6568615406054840 |
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9033828541812842 |
dc.contributor.author.fl_str_mv |
CAVALCANTE, Túlio de Moura |
dc.contributor.advisor1.fl_str_mv |
LYRA, Paulo Roberto Maciel |
dc.contributor.advisor-co1.fl_str_mv |
CARVALHO, Darlan Karlo Elisiário de |
contributor_str_mv |
LYRA, Paulo Roberto Maciel CARVALHO, Darlan Karlo Elisiário de |
dc.subject.por.fl_str_mv |
Engenharia civil Simulação numérica Escoamento bifásico de água e óleo Reservatórios heterogêneos e anisotrópicos Reservatórios fraturados pEDFM MPFA-D DMP |
topic |
Engenharia civil Simulação numérica Escoamento bifásico de água e óleo Reservatórios heterogêneos e anisotrópicos Reservatórios fraturados pEDFM MPFA-D DMP |
description |
Fluid flow in fractured porous media is a very relevant phenomenon, since most of the remaining oil reserves in the world reside in this type of formations, in addition to the fact that fractures are also present in shallower layers of the crust, which makes them influential also in water extraction and waste dispersion. The two-phase flow of oil and water in reservoirs can be mathematically described by a set of non-linear partial differential equations, whose modeling constitutes a great challenge, due to the complexity of the depositional environments, in addition to the presence of fractures. In these cases, it is particularly complex to construct structured computational meshes capable of adequately representing the reservoir. In the present work, a new strategy was developed to simulate immiscible two-phase flow in 3-D fractured porous media, using tetrahedral unstructured meshes. Such a strategy is based on a finite volume method with multipoint flux approximation that uses the so-called "diamond stencil" (MPFA-D), considering a projection-based embedded discrete fracture model (pEDFM) to include the influences of the fractures in the global reservoir model. The MPFA-D is a robust and flexible formulation, capable of handling highly heterogeneous, possibly discontinuous, and anisotropic, even non-orthotropic, diffusion tensors, and which achieves second- order convergence rates for the scalar variable and first-order convergence rates for its gradient. However, like other linear MPFA methods, it does not formally guarantee monotonic solutions or those that respect the Discrete Maximum Principle (DMP) and can produce spurious oscillations in the pressure field for permeability tensors with high anisotropy ratio or for distorted meshes. To deal with this problem and enforce DMP compliance, an alternative non-linear defect correction for MPFA-D was developed. Furthermore, the adopted fracture model avoids the additional complexity of aligning fractures with edges or faces of the computational mesh that discretizes the domain corresponding to the porous medium, making the construction of this mesh more flexible and less susceptible to excessive localized refinements. The saturation terms of the mathematical model are discretized according to the backward Euler method, in the context of a fully implicit numerical scheme. The proposed numerical methods, as well as the simulator composed by them, were tested against problems found in the literature and others elaborated by the author, aiming to demonstrate the robustness and flexibility of the developed computational simulation tool. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-03-27T14:14:52Z |
dc.date.available.fl_str_mv |
2023-03-27T14:14:52Z |
dc.date.issued.fl_str_mv |
2023-03-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CAVALCANTE, Túlio de Moura. Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes. 2023. Tese (Doutorado em Engenharia Civil) – Universidade Federal de Pernambuco, Recife, 2023. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/49492 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000krrt |
identifier_str_mv |
CAVALCANTE, Túlio de Moura. Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes. 2023. Tese (Doutorado em Engenharia Civil) – Universidade Federal de Pernambuco, Recife, 2023. ark:/64986/001300000krrt |
url |
https://repositorio.ufpe.br/handle/123456789/49492 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Engenharia Civil |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/49492/1/TESE%20T%c3%balio%20de%20Moura%20Cavalcante.pdf https://repositorio.ufpe.br/bitstream/123456789/49492/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/49492/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/49492/4/TESE%20T%c3%balio%20de%20Moura%20Cavalcante.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/49492/5/TESE%20T%c3%balio%20de%20Moura%20Cavalcante.pdf.jpg |
bitstream.checksum.fl_str_mv |
09e44bb91693db7ab684a79e4653d132 e39d27027a6cc9cb039ad269a5db8e34 5e89a1613ddc8510c6576f4b23a78973 1cc6d6bc57726f58f83061ca7241bb2a abc0590ecda4d01e5453d93f85bda080 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172850292621312 |