Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes

Detalhes bibliográficos
Autor(a) principal: CAVALCANTE, Túlio de Moura
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000krrt
Texto Completo: https://repositorio.ufpe.br/handle/123456789/49492
Resumo: Fluid flow in fractured porous media is a very relevant phenomenon, since most of the remaining oil reserves in the world reside in this type of formations, in addition to the fact that fractures are also present in shallower layers of the crust, which makes them influential also in water extraction and waste dispersion. The two-phase flow of oil and water in reservoirs can be mathematically described by a set of non-linear partial differential equations, whose modeling constitutes a great challenge, due to the complexity of the depositional environments, in addition to the presence of fractures. In these cases, it is particularly complex to construct structured computational meshes capable of adequately representing the reservoir. In the present work, a new strategy was developed to simulate immiscible two-phase flow in 3-D fractured porous media, using tetrahedral unstructured meshes. Such a strategy is based on a finite volume method with multipoint flux approximation that uses the so-called "diamond stencil" (MPFA-D), considering a projection-based embedded discrete fracture model (pEDFM) to include the influences of the fractures in the global reservoir model. The MPFA-D is a robust and flexible formulation, capable of handling highly heterogeneous, possibly discontinuous, and anisotropic, even non-orthotropic, diffusion tensors, and which achieves second- order convergence rates for the scalar variable and first-order convergence rates for its gradient. However, like other linear MPFA methods, it does not formally guarantee monotonic solutions or those that respect the Discrete Maximum Principle (DMP) and can produce spurious oscillations in the pressure field for permeability tensors with high anisotropy ratio or for distorted meshes. To deal with this problem and enforce DMP compliance, an alternative non-linear defect correction for MPFA-D was developed. Furthermore, the adopted fracture model avoids the additional complexity of aligning fractures with edges or faces of the computational mesh that discretizes the domain corresponding to the porous medium, making the construction of this mesh more flexible and less susceptible to excessive localized refinements. The saturation terms of the mathematical model are discretized according to the backward Euler method, in the context of a fully implicit numerical scheme. The proposed numerical methods, as well as the simulator composed by them, were tested against problems found in the literature and others elaborated by the author, aiming to demonstrate the robustness and flexibility of the developed computational simulation tool.
id UFPE_3030412d21bb7f591707c24ac1bbf677
oai_identifier_str oai:repositorio.ufpe.br:123456789/49492
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling CAVALCANTE, Túlio de Mourahttp://lattes.cnpq.br/8867705542362809http://lattes.cnpq.br/6568615406054840http://lattes.cnpq.br/9033828541812842LYRA, Paulo Roberto MacielCARVALHO, Darlan Karlo Elisiário de2023-03-27T14:14:52Z2023-03-27T14:14:52Z2023-03-10CAVALCANTE, Túlio de Moura. Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes. 2023. Tese (Doutorado em Engenharia Civil) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/49492ark:/64986/001300000krrtFluid flow in fractured porous media is a very relevant phenomenon, since most of the remaining oil reserves in the world reside in this type of formations, in addition to the fact that fractures are also present in shallower layers of the crust, which makes them influential also in water extraction and waste dispersion. The two-phase flow of oil and water in reservoirs can be mathematically described by a set of non-linear partial differential equations, whose modeling constitutes a great challenge, due to the complexity of the depositional environments, in addition to the presence of fractures. In these cases, it is particularly complex to construct structured computational meshes capable of adequately representing the reservoir. In the present work, a new strategy was developed to simulate immiscible two-phase flow in 3-D fractured porous media, using tetrahedral unstructured meshes. Such a strategy is based on a finite volume method with multipoint flux approximation that uses the so-called "diamond stencil" (MPFA-D), considering a projection-based embedded discrete fracture model (pEDFM) to include the influences of the fractures in the global reservoir model. The MPFA-D is a robust and flexible formulation, capable of handling highly heterogeneous, possibly discontinuous, and anisotropic, even non-orthotropic, diffusion tensors, and which achieves second- order convergence rates for the scalar variable and first-order convergence rates for its gradient. However, like other linear MPFA methods, it does not formally guarantee monotonic solutions or those that respect the Discrete Maximum Principle (DMP) and can produce spurious oscillations in the pressure field for permeability tensors with high anisotropy ratio or for distorted meshes. To deal with this problem and enforce DMP compliance, an alternative non-linear defect correction for MPFA-D was developed. Furthermore, the adopted fracture model avoids the additional complexity of aligning fractures with edges or faces of the computational mesh that discretizes the domain corresponding to the porous medium, making the construction of this mesh more flexible and less susceptible to excessive localized refinements. The saturation terms of the mathematical model are discretized according to the backward Euler method, in the context of a fully implicit numerical scheme. The proposed numerical methods, as well as the simulator composed by them, were tested against problems found in the literature and others elaborated by the author, aiming to demonstrate the robustness and flexibility of the developed computational simulation tool.FACEPEO escoamento de fluidos em meios porosos fraturados é um fenômeno muito relevante, pois a maior parte das reservas de petróleo remanescentes no mundo residem neste tipo de formações, além de as fraturas também estarem presentes em camadas menos profundas da crosta, o que as torna influentes também na extração de água e na dispersão de resíduos. O escoamento bifásico de água e óleo em reservatórios pode ser descrito matematicamente por um conjunto de equações diferenciais parciais não-lineares, cuja modelagem constitui-se num grande desafio, devido à complexidade dos ambientes deposicionais, além da presença das fraturas. Nesses casos, é particularmente complexo construir malhas computacionais estruturadas capazes de representar adequadamente o reservatório. No presente trabalho, uma nova estratégia foi desenvolvida para simular o escoamento bifásico imiscível em meios porosos fraturados 3-D, usando malhas não- estruturadas tetraédricas. Tal estratégia é baseada em um método de volumes finitos com aproximação de fluxo por múltiplos pontos que utiliza o chamado "estêncil de diamante" (MPFA-D), considerando um modelo de fratura discreta embutida baseado em projeção (pEDFM) para incluir as influências das fraturas no modelo global do reservatório. O MPFA-D é uma formulação robusta e flexível, capaz de lidar com tensores de difusão altamente heterogêneos, possivelmente descontínuos, e anisotrópicos, inclusive não- ortotrópicos, e que alcança taxas de convergência de segunda ordem para a variável escalar e de primeira ordem para o seu gradiente. No entanto, como outros métodos MPFA lineares, ele não garante formalmente soluções monótonas ou que respeitem o Princípio do Máximo Discreto (DMP) e pode produzir oscilações espúrias no campo de pressão para tensores de permeabilidade com razão de anisotropia elevada ou para malhas distorcidas. Para lidar com este problema e impor a observância do DMP, foi desenvolvida uma alternativa de correção não-linear para o MPFA-D. Além disso, o modelo de fratura adotado evita a complexidade adicional de alinhar fraturas com arestas ou faces da malha computacional que discretiza o domínio correspondente ao meio poroso, tornando a construção dessa malha mais flexível e menos suscetível a refinamentos localizados excessivos. Os termos de saturação do modelo matemático são discretizados segundo o método de Euler avançado, no contexto de um esquema numérico totalmente implícito. Os métodos numéricos propostos, bem como o simulador composto por eles, foram testados frente a problemas encontrados na literatura e outros elaborados pelo autor, visando demonstrar a robustez e a flexibilidade da ferramenta de simulação computacional desenvolvida.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia CivilUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEngenharia civilSimulação numéricaEscoamento bifásico de água e óleoReservatórios heterogêneos e anisotrópicosReservatórios fraturadospEDFMMPFA-DDMPSimulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE Túlio de Moura Cavalcante.pdfTESE Túlio de Moura Cavalcante.pdfapplication/pdf3634813https://repositorio.ufpe.br/bitstream/123456789/49492/1/TESE%20T%c3%balio%20de%20Moura%20Cavalcante.pdf09e44bb91693db7ab684a79e4653d132MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/49492/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/49492/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTTESE Túlio de Moura Cavalcante.pdf.txtTESE Túlio de Moura Cavalcante.pdf.txtExtracted texttext/plain250352https://repositorio.ufpe.br/bitstream/123456789/49492/4/TESE%20T%c3%balio%20de%20Moura%20Cavalcante.pdf.txt1cc6d6bc57726f58f83061ca7241bb2aMD54THUMBNAILTESE Túlio de Moura Cavalcante.pdf.jpgTESE Túlio de Moura Cavalcante.pdf.jpgGenerated Thumbnailimage/jpeg1235https://repositorio.ufpe.br/bitstream/123456789/49492/5/TESE%20T%c3%balio%20de%20Moura%20Cavalcante.pdf.jpgabc0590ecda4d01e5453d93f85bda080MD55123456789/494922023-03-28 02:14:01.908oai:repositorio.ufpe.br:123456789/49492VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-03-28T05:14:01Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes
title Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes
spellingShingle Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes
CAVALCANTE, Túlio de Moura
Engenharia civil
Simulação numérica
Escoamento bifásico de água e óleo
Reservatórios heterogêneos e anisotrópicos
Reservatórios fraturados
pEDFM
MPFA-D
DMP
title_short Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes
title_full Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes
title_fullStr Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes
title_full_unstemmed Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes
title_sort Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes
author CAVALCANTE, Túlio de Moura
author_facet CAVALCANTE, Túlio de Moura
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/8867705542362809
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6568615406054840
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9033828541812842
dc.contributor.author.fl_str_mv CAVALCANTE, Túlio de Moura
dc.contributor.advisor1.fl_str_mv LYRA, Paulo Roberto Maciel
dc.contributor.advisor-co1.fl_str_mv CARVALHO, Darlan Karlo Elisiário de
contributor_str_mv LYRA, Paulo Roberto Maciel
CARVALHO, Darlan Karlo Elisiário de
dc.subject.por.fl_str_mv Engenharia civil
Simulação numérica
Escoamento bifásico de água e óleo
Reservatórios heterogêneos e anisotrópicos
Reservatórios fraturados
pEDFM
MPFA-D
DMP
topic Engenharia civil
Simulação numérica
Escoamento bifásico de água e óleo
Reservatórios heterogêneos e anisotrópicos
Reservatórios fraturados
pEDFM
MPFA-D
DMP
description Fluid flow in fractured porous media is a very relevant phenomenon, since most of the remaining oil reserves in the world reside in this type of formations, in addition to the fact that fractures are also present in shallower layers of the crust, which makes them influential also in water extraction and waste dispersion. The two-phase flow of oil and water in reservoirs can be mathematically described by a set of non-linear partial differential equations, whose modeling constitutes a great challenge, due to the complexity of the depositional environments, in addition to the presence of fractures. In these cases, it is particularly complex to construct structured computational meshes capable of adequately representing the reservoir. In the present work, a new strategy was developed to simulate immiscible two-phase flow in 3-D fractured porous media, using tetrahedral unstructured meshes. Such a strategy is based on a finite volume method with multipoint flux approximation that uses the so-called "diamond stencil" (MPFA-D), considering a projection-based embedded discrete fracture model (pEDFM) to include the influences of the fractures in the global reservoir model. The MPFA-D is a robust and flexible formulation, capable of handling highly heterogeneous, possibly discontinuous, and anisotropic, even non-orthotropic, diffusion tensors, and which achieves second- order convergence rates for the scalar variable and first-order convergence rates for its gradient. However, like other linear MPFA methods, it does not formally guarantee monotonic solutions or those that respect the Discrete Maximum Principle (DMP) and can produce spurious oscillations in the pressure field for permeability tensors with high anisotropy ratio or for distorted meshes. To deal with this problem and enforce DMP compliance, an alternative non-linear defect correction for MPFA-D was developed. Furthermore, the adopted fracture model avoids the additional complexity of aligning fractures with edges or faces of the computational mesh that discretizes the domain corresponding to the porous medium, making the construction of this mesh more flexible and less susceptible to excessive localized refinements. The saturation terms of the mathematical model are discretized according to the backward Euler method, in the context of a fully implicit numerical scheme. The proposed numerical methods, as well as the simulator composed by them, were tested against problems found in the literature and others elaborated by the author, aiming to demonstrate the robustness and flexibility of the developed computational simulation tool.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-03-27T14:14:52Z
dc.date.available.fl_str_mv 2023-03-27T14:14:52Z
dc.date.issued.fl_str_mv 2023-03-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CAVALCANTE, Túlio de Moura. Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes. 2023. Tese (Doutorado em Engenharia Civil) – Universidade Federal de Pernambuco, Recife, 2023.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/49492
dc.identifier.dark.fl_str_mv ark:/64986/001300000krrt
identifier_str_mv CAVALCANTE, Túlio de Moura. Simulation of immiscible two-phase flow in 3-D naturally fractured reservoirs using a locally conservative method, a projection-based embedded discrete fracture model and unstructured tetrahedral meshes. 2023. Tese (Doutorado em Engenharia Civil) – Universidade Federal de Pernambuco, Recife, 2023.
ark:/64986/001300000krrt
url https://repositorio.ufpe.br/handle/123456789/49492
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Engenharia Civil
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/49492/1/TESE%20T%c3%balio%20de%20Moura%20Cavalcante.pdf
https://repositorio.ufpe.br/bitstream/123456789/49492/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/49492/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/49492/4/TESE%20T%c3%balio%20de%20Moura%20Cavalcante.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/49492/5/TESE%20T%c3%balio%20de%20Moura%20Cavalcante.pdf.jpg
bitstream.checksum.fl_str_mv 09e44bb91693db7ab684a79e4653d132
e39d27027a6cc9cb039ad269a5db8e34
5e89a1613ddc8510c6576f4b23a78973
1cc6d6bc57726f58f83061ca7241bb2a
abc0590ecda4d01e5453d93f85bda080
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172850292621312