A finite volume scheme coupled with a hybrid-grid method for the 2-d simulation of two-phase flows in naturally fractured reservoirs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000013xp9 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/32952 |
Resumo: | Two-phase flows of oil and water in naturally fractured petroleum reservoirs can be described by a system of nonlinear partial differential equations that comprises an elliptic pressure equation and a hyperbolic saturation equation coupled through the total velocity field. Modeling this problem is a great challenge, due to the complexity of the depositional environments, which can include fractures (channels or barriers). In such cases, it is particularly complex to construct structured meshes which are capable of properly modeling the reservoir. In this work, a locally conservative approach to model the oil and water displacements in naturally fractured reservoirs using general unstructured meshes was developed. A cell-centered Finite-Volume Method with a Multi-Point Flux Approximation that uses the so called “diamond stencil” (MPFA-D) was used to solve the pressure equation, coupled with a Hybrid-Grid Method (HyG) to deal with the fractures. The classical First Order Upwind Method (FOUM) was used to solve the saturation equation. The FOUM was applied in two different segregated schemes, in its explicit and implicit versions, respectively the IMPES (IMplicit Pressure and Explicit Saturation) and the SEQ (SEQuential implicit pressure and saturation). The MPFA-D is a very robust and flexible formulation that is capable of handling highly heterogeneous and anisotropic domains using general polygonal meshes. In the HyG, the mesh that discretizes the domain must fit the spatial positions of the fractures, so that they are associated to edges - as 1-D cells in a 2-D mesh -, therefore, the calculation of the fluxes in these edges is dependent on the pressures on fractures and on the adjacent volumes, but, in this strategy, the fractures are expanded, in the computational domain, to the same dimension of the mesh. In this way, it is possible to get, for example, 2-D fracture cells in a 2-D mesh, but avoiding excessive refinement in the fractured regions, in the original mesh. The proposed formulation presented quite remarkable results when compared with similar formulations using classical full pressure support and triangle pressure support methods, or even the with MPFA-D itself when using an equidimensional approach. |
id |
UFPE_4bf1259ee4e7987b982a4af56b297e56 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/32952 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
CAVALCANTE, Túlio de Mourahttp://lattes.cnpq.br/8867705542362809http://lattes.cnpq.br/6568615406054840LYRA, Paulo Roberto MacielCARVALHO, Darlan Karlo Elisiário de2019-09-16T19:07:29Z2019-09-16T19:07:29Z2019-01-18https://repositorio.ufpe.br/handle/123456789/32952ark:/64986/0013000013xp9Two-phase flows of oil and water in naturally fractured petroleum reservoirs can be described by a system of nonlinear partial differential equations that comprises an elliptic pressure equation and a hyperbolic saturation equation coupled through the total velocity field. Modeling this problem is a great challenge, due to the complexity of the depositional environments, which can include fractures (channels or barriers). In such cases, it is particularly complex to construct structured meshes which are capable of properly modeling the reservoir. In this work, a locally conservative approach to model the oil and water displacements in naturally fractured reservoirs using general unstructured meshes was developed. A cell-centered Finite-Volume Method with a Multi-Point Flux Approximation that uses the so called “diamond stencil” (MPFA-D) was used to solve the pressure equation, coupled with a Hybrid-Grid Method (HyG) to deal with the fractures. The classical First Order Upwind Method (FOUM) was used to solve the saturation equation. The FOUM was applied in two different segregated schemes, in its explicit and implicit versions, respectively the IMPES (IMplicit Pressure and Explicit Saturation) and the SEQ (SEQuential implicit pressure and saturation). The MPFA-D is a very robust and flexible formulation that is capable of handling highly heterogeneous and anisotropic domains using general polygonal meshes. In the HyG, the mesh that discretizes the domain must fit the spatial positions of the fractures, so that they are associated to edges - as 1-D cells in a 2-D mesh -, therefore, the calculation of the fluxes in these edges is dependent on the pressures on fractures and on the adjacent volumes, but, in this strategy, the fractures are expanded, in the computational domain, to the same dimension of the mesh. In this way, it is possible to get, for example, 2-D fracture cells in a 2-D mesh, but avoiding excessive refinement in the fractured regions, in the original mesh. The proposed formulation presented quite remarkable results when compared with similar formulations using classical full pressure support and triangle pressure support methods, or even the with MPFA-D itself when using an equidimensional approach.FACEPEEscoamentos bifásicos de óleo e água em reservatórios de petróleo naturalmente fraturados podem ser descritos por um sistema de equações diferenciais parciais não-lineares que compreende uma equação elíptica de pressão e uma equação hiperbólica de saturação acopladas através do campo de velocidade total. Modelar este tipo de problema é um grande desafio, devido à complexidade dos ambientes deposicionais, que pode incluir fraturas (canais ou barreiras). Em tais casos, é particularmente complexo construir malhas estruturadas capazes de modelar adequadamente o reservatório. Neste trabalho, foi desenvolvida uma formulação localmente conservativa para modelar os escoamentos de óleo e água em reservatórios naturalmente fraturados usando malhas não-estruturadas. Para resolver a equação da pressão, foi adaptado um método de volumes finitos centrado na célula com uma aproximação de fluxo por múltiplos pontos que usa o chamado "estêncil de diamante" (MPFA-D) acoplado a um método de malha híbrida (HyG) para lidar com as fraturas. O clássico método de ponderação à montante de primeira ordem (FOUM) foi usado para resolver a equação de saturação. O FOUM foi aplicado em dois esquemas segregados diferentes, em suas versões explícita e implícita, respectivamente o IMPES (solução Implícita para a Pressão e Explícita para a Saturação) e o SEQ (solução SEQuencialmente implícita para pressão e saturação). O MPFA-D é uma formulação muito robusta e flexível que é capaz de lidar com domínios altamente heterogêneos e anisotrópicos usando malhas poligonais quaisquer. No HyG, a malha que discretiza o domínio deve ajustar-se às posições espaciais das fraturas, de forma que elas estejam associadas a arestas - como células 1-D em uma malha 2-D -, portanto, o cálculo dos fluxos nessas arestas é dependente das pressões nas fraturas e nos volumes adjacentes, mas, nessa estratégia, as fraturas são expandidas, no domínio computacional, para a mesma dimensão da malha. Dessa forma, é possível obter, por exemplo, células de fratura 2-D em uma malha 2-D, mas evitando-se refinamentos excessivos nas regiões das fraturas, na malha original. A formulação proposta apresentou bons resultados quando comparada com formulações similares utilizando métodos clássicos com suporte total e suporte triangular para a pressão, ou mesmo com o próprio MPFA-D, numa abordagem equidimensional.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia MecanicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEngenharia MecânicaEscoamento bifásico de óleo e águaReservatórios heterogêneos e anisotrópicosReservatórios naturalmente fraturadosModelo de malha híbridaMPFA-DA finite volume scheme coupled with a hybrid-grid method for the 2-d simulation of two-phase flows in naturally fractured reservoirsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Túlio de Moura Cavalcante.pdf.jpgDISSERTAÇÃO Túlio de Moura Cavalcante.pdf.jpgGenerated Thumbnailimage/jpeg1290https://repositorio.ufpe.br/bitstream/123456789/32952/5/DISSERTA%c3%87%c3%83O%20T%c3%balio%20de%20Moura%20Cavalcante.pdf.jpg280f4735a20dd082d3bea2547675cab1MD55ORIGINALDISSERTAÇÃO Túlio de Moura Cavalcante.pdfDISSERTAÇÃO Túlio de Moura Cavalcante.pdfapplication/pdf4247241https://repositorio.ufpe.br/bitstream/123456789/32952/1/DISSERTA%c3%87%c3%83O%20T%c3%balio%20de%20Moura%20Cavalcante.pdf1af13b8165ed46f0da45cb29536ab9e7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/32952/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/32952/3/license.txtbd573a5ca8288eb7272482765f819534MD53TEXTDISSERTAÇÃO Túlio de Moura Cavalcante.pdf.txtDISSERTAÇÃO Túlio de Moura Cavalcante.pdf.txtExtracted texttext/plain132631https://repositorio.ufpe.br/bitstream/123456789/32952/4/DISSERTA%c3%87%c3%83O%20T%c3%balio%20de%20Moura%20Cavalcante.pdf.txtb8e7efc78dc81cb7e9d4abbf87f910b8MD54123456789/329522019-10-25 11:08:18.656oai:repositorio.ufpe.br:123456789/32952TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T14:08:18Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
A finite volume scheme coupled with a hybrid-grid method for the 2-d simulation of two-phase flows in naturally fractured reservoirs |
title |
A finite volume scheme coupled with a hybrid-grid method for the 2-d simulation of two-phase flows in naturally fractured reservoirs |
spellingShingle |
A finite volume scheme coupled with a hybrid-grid method for the 2-d simulation of two-phase flows in naturally fractured reservoirs CAVALCANTE, Túlio de Moura Engenharia Mecânica Escoamento bifásico de óleo e água Reservatórios heterogêneos e anisotrópicos Reservatórios naturalmente fraturados Modelo de malha híbrida MPFA-D |
title_short |
A finite volume scheme coupled with a hybrid-grid method for the 2-d simulation of two-phase flows in naturally fractured reservoirs |
title_full |
A finite volume scheme coupled with a hybrid-grid method for the 2-d simulation of two-phase flows in naturally fractured reservoirs |
title_fullStr |
A finite volume scheme coupled with a hybrid-grid method for the 2-d simulation of two-phase flows in naturally fractured reservoirs |
title_full_unstemmed |
A finite volume scheme coupled with a hybrid-grid method for the 2-d simulation of two-phase flows in naturally fractured reservoirs |
title_sort |
A finite volume scheme coupled with a hybrid-grid method for the 2-d simulation of two-phase flows in naturally fractured reservoirs |
author |
CAVALCANTE, Túlio de Moura |
author_facet |
CAVALCANTE, Túlio de Moura |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/8867705542362809 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6568615406054840 |
dc.contributor.author.fl_str_mv |
CAVALCANTE, Túlio de Moura |
dc.contributor.advisor1.fl_str_mv |
LYRA, Paulo Roberto Maciel |
dc.contributor.advisor-co1.fl_str_mv |
CARVALHO, Darlan Karlo Elisiário de |
contributor_str_mv |
LYRA, Paulo Roberto Maciel CARVALHO, Darlan Karlo Elisiário de |
dc.subject.por.fl_str_mv |
Engenharia Mecânica Escoamento bifásico de óleo e água Reservatórios heterogêneos e anisotrópicos Reservatórios naturalmente fraturados Modelo de malha híbrida MPFA-D |
topic |
Engenharia Mecânica Escoamento bifásico de óleo e água Reservatórios heterogêneos e anisotrópicos Reservatórios naturalmente fraturados Modelo de malha híbrida MPFA-D |
description |
Two-phase flows of oil and water in naturally fractured petroleum reservoirs can be described by a system of nonlinear partial differential equations that comprises an elliptic pressure equation and a hyperbolic saturation equation coupled through the total velocity field. Modeling this problem is a great challenge, due to the complexity of the depositional environments, which can include fractures (channels or barriers). In such cases, it is particularly complex to construct structured meshes which are capable of properly modeling the reservoir. In this work, a locally conservative approach to model the oil and water displacements in naturally fractured reservoirs using general unstructured meshes was developed. A cell-centered Finite-Volume Method with a Multi-Point Flux Approximation that uses the so called “diamond stencil” (MPFA-D) was used to solve the pressure equation, coupled with a Hybrid-Grid Method (HyG) to deal with the fractures. The classical First Order Upwind Method (FOUM) was used to solve the saturation equation. The FOUM was applied in two different segregated schemes, in its explicit and implicit versions, respectively the IMPES (IMplicit Pressure and Explicit Saturation) and the SEQ (SEQuential implicit pressure and saturation). The MPFA-D is a very robust and flexible formulation that is capable of handling highly heterogeneous and anisotropic domains using general polygonal meshes. In the HyG, the mesh that discretizes the domain must fit the spatial positions of the fractures, so that they are associated to edges - as 1-D cells in a 2-D mesh -, therefore, the calculation of the fluxes in these edges is dependent on the pressures on fractures and on the adjacent volumes, but, in this strategy, the fractures are expanded, in the computational domain, to the same dimension of the mesh. In this way, it is possible to get, for example, 2-D fracture cells in a 2-D mesh, but avoiding excessive refinement in the fractured regions, in the original mesh. The proposed formulation presented quite remarkable results when compared with similar formulations using classical full pressure support and triangle pressure support methods, or even the with MPFA-D itself when using an equidimensional approach. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-09-16T19:07:29Z |
dc.date.available.fl_str_mv |
2019-09-16T19:07:29Z |
dc.date.issued.fl_str_mv |
2019-01-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/32952 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000013xp9 |
url |
https://repositorio.ufpe.br/handle/123456789/32952 |
identifier_str_mv |
ark:/64986/0013000013xp9 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Engenharia Mecanica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/32952/5/DISSERTA%c3%87%c3%83O%20T%c3%balio%20de%20Moura%20Cavalcante.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/32952/1/DISSERTA%c3%87%c3%83O%20T%c3%balio%20de%20Moura%20Cavalcante.pdf https://repositorio.ufpe.br/bitstream/123456789/32952/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/32952/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/32952/4/DISSERTA%c3%87%c3%83O%20T%c3%balio%20de%20Moura%20Cavalcante.pdf.txt |
bitstream.checksum.fl_str_mv |
280f4735a20dd082d3bea2547675cab1 1af13b8165ed46f0da45cb29536ab9e7 e39d27027a6cc9cb039ad269a5db8e34 bd573a5ca8288eb7272482765f819534 b8e7efc78dc81cb7e9d4abbf87f910b8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172995663003648 |