Contribuição no desenvolvimento de observadores de estado para o processo de hidrotratamento de óleo diesel (aplicação em controle inferencial)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000011q34 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/6906 |
Resumo: | Devido a maior oferta de petróleos pesados e alto grau de contaminantes que os derivados deste possuem, os processos de hidrorrefino têm recebido atenção especial ao longo dos últimos por possibilitar a remoção de contaminantes e melhorar a margem de lucro das refinarias por tonar possível a obtenção de derivados de maior valor agregado. Entre esses o processo de hidrotratamento (HDT), no qual ocorre uma série de reações que utilizam o gás hidrogênio como reagente, foi o foco de estudo deste trabalho. Ao ser aplicado em correntes de Diesel o HDT realiza a remoção de contaminantes como enxofre e nitrogênio, aumentando a qualidade do mesmo. A unidade de HDT tem como principal equipamento o reator, que consiste em um leito com partículas sólidas, onde gás e líquido escoam em fluxo co-corrente ou em contracorrente. Apesar deste processo já ser maduro, o crescente aumento nas exigências de mercado demandam por melhorias no mesmo, a fim de atingir uma rentabilidade cada vez maior. Desta forma o uso de inferenciadores na estimação das variáveis tornaria possível o melhor acompanhamento do processo como também a implementação de novas estratégias de controle. Visto a relevância desse tema o presente trabalho abordou o desenvolvimento de observadores de estado para o reator do processo de HDT, para isto foi necessário a aquisição de dados do processo, o que foi conseguido através de um modelo matemático do reator, o qual foi denominado como planta virtual. Esta forneceu os dados para treinamento e validação dos inferenciadores aqui estudados: as redes neuronais e a neuro-fuzzy. No decorrer do trabalho foi definido o tempo de amostragem e o período de excitação do sinal através da menor constante de tempo. Para treinamento dos inferenciadores foi utilizado dois bancos de dados distintos, um com tempo de amostragem de 50s, onde este foi obtido pelo método da constante de tempo, e outro com amostragem de 10 minutos, em que as seguintes variáveis foram inferenciadas: concentração de compostos sulfurados, nitrogenados e olefinas na saída do reator. Dessas o melhor resultado foi obtido na inferência da concentração de compostos sulfurados realizada através da Rede Neuronal. Foi escolhida esta rede neuronal na implementação de um controlador PID e como modelo interno de um controlador NNMPC. O controlador PID cuja variável de controle foi à concentração de sulfurados foi chamado de controlador PID inferencial e os resultados deste se mostraram melhores do que os resultados obtidos pelo controlador NNMPC |
id |
UFPE_3f689529ddd1c1c6ffec36d2a8b26460 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/6906 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Cristiano Dos Santos Camelo, MartesonLucena, Sérgio 2014-06-12T18:08:23Z2014-06-12T18:08:23Z2012-01-31Cristiano Dos Santos Camelo, Marteson; Lucena, Sérgio. Contribuição no desenvolvimento de observadores de estado para o processo de hidrotratamento de óleo diesel (aplicação em controle inferencial). 2012. Dissertação (Mestrado). Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Pernambuco, Recife, 2012.https://repositorio.ufpe.br/handle/123456789/6906ark:/64986/0013000011q34Devido a maior oferta de petróleos pesados e alto grau de contaminantes que os derivados deste possuem, os processos de hidrorrefino têm recebido atenção especial ao longo dos últimos por possibilitar a remoção de contaminantes e melhorar a margem de lucro das refinarias por tonar possível a obtenção de derivados de maior valor agregado. Entre esses o processo de hidrotratamento (HDT), no qual ocorre uma série de reações que utilizam o gás hidrogênio como reagente, foi o foco de estudo deste trabalho. Ao ser aplicado em correntes de Diesel o HDT realiza a remoção de contaminantes como enxofre e nitrogênio, aumentando a qualidade do mesmo. A unidade de HDT tem como principal equipamento o reator, que consiste em um leito com partículas sólidas, onde gás e líquido escoam em fluxo co-corrente ou em contracorrente. Apesar deste processo já ser maduro, o crescente aumento nas exigências de mercado demandam por melhorias no mesmo, a fim de atingir uma rentabilidade cada vez maior. Desta forma o uso de inferenciadores na estimação das variáveis tornaria possível o melhor acompanhamento do processo como também a implementação de novas estratégias de controle. Visto a relevância desse tema o presente trabalho abordou o desenvolvimento de observadores de estado para o reator do processo de HDT, para isto foi necessário a aquisição de dados do processo, o que foi conseguido através de um modelo matemático do reator, o qual foi denominado como planta virtual. Esta forneceu os dados para treinamento e validação dos inferenciadores aqui estudados: as redes neuronais e a neuro-fuzzy. No decorrer do trabalho foi definido o tempo de amostragem e o período de excitação do sinal através da menor constante de tempo. Para treinamento dos inferenciadores foi utilizado dois bancos de dados distintos, um com tempo de amostragem de 50s, onde este foi obtido pelo método da constante de tempo, e outro com amostragem de 10 minutos, em que as seguintes variáveis foram inferenciadas: concentração de compostos sulfurados, nitrogenados e olefinas na saída do reator. Dessas o melhor resultado foi obtido na inferência da concentração de compostos sulfurados realizada através da Rede Neuronal. Foi escolhida esta rede neuronal na implementação de um controlador PID e como modelo interno de um controlador NNMPC. O controlador PID cuja variável de controle foi à concentração de sulfurados foi chamado de controlador PID inferencial e os resultados deste se mostraram melhores do que os resultados obtidos pelo controlador NNMPCporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessHidrotratamento de DieselRedes neuronaisNeuro-fuzzyControle InferencialContribuição no desenvolvimento de observadores de estado para o processo de hidrotratamento de óleo diesel (aplicação em controle inferencial)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo9473_1.pdf.jpgarquivo9473_1.pdf.jpgGenerated Thumbnailimage/jpeg2145https://repositorio.ufpe.br/bitstream/123456789/6906/4/arquivo9473_1.pdf.jpg50364a2a7bd1cb065e09c37b37f1af4dMD54ORIGINALarquivo9473_1.pdfapplication/pdf920450https://repositorio.ufpe.br/bitstream/123456789/6906/1/arquivo9473_1.pdf8de41a22d93f1f66a4f3481b45626f98MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/6906/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo9473_1.pdf.txtarquivo9473_1.pdf.txtExtracted texttext/plain133455https://repositorio.ufpe.br/bitstream/123456789/6906/3/arquivo9473_1.pdf.txtccfb40411e7cd0a3f3e63ac62300c7e1MD53123456789/69062019-10-25 14:12:07.096oai:repositorio.ufpe.br:123456789/6906Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T17:12:07Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Contribuição no desenvolvimento de observadores de estado para o processo de hidrotratamento de óleo diesel (aplicação em controle inferencial) |
title |
Contribuição no desenvolvimento de observadores de estado para o processo de hidrotratamento de óleo diesel (aplicação em controle inferencial) |
spellingShingle |
Contribuição no desenvolvimento de observadores de estado para o processo de hidrotratamento de óleo diesel (aplicação em controle inferencial) Cristiano Dos Santos Camelo, Marteson Hidrotratamento de Diesel Redes neuronais Neuro-fuzzy Controle Inferencial |
title_short |
Contribuição no desenvolvimento de observadores de estado para o processo de hidrotratamento de óleo diesel (aplicação em controle inferencial) |
title_full |
Contribuição no desenvolvimento de observadores de estado para o processo de hidrotratamento de óleo diesel (aplicação em controle inferencial) |
title_fullStr |
Contribuição no desenvolvimento de observadores de estado para o processo de hidrotratamento de óleo diesel (aplicação em controle inferencial) |
title_full_unstemmed |
Contribuição no desenvolvimento de observadores de estado para o processo de hidrotratamento de óleo diesel (aplicação em controle inferencial) |
title_sort |
Contribuição no desenvolvimento de observadores de estado para o processo de hidrotratamento de óleo diesel (aplicação em controle inferencial) |
author |
Cristiano Dos Santos Camelo, Marteson |
author_facet |
Cristiano Dos Santos Camelo, Marteson |
author_role |
author |
dc.contributor.author.fl_str_mv |
Cristiano Dos Santos Camelo, Marteson |
dc.contributor.advisor1.fl_str_mv |
Lucena, Sérgio |
contributor_str_mv |
Lucena, Sérgio |
dc.subject.por.fl_str_mv |
Hidrotratamento de Diesel Redes neuronais Neuro-fuzzy Controle Inferencial |
topic |
Hidrotratamento de Diesel Redes neuronais Neuro-fuzzy Controle Inferencial |
description |
Devido a maior oferta de petróleos pesados e alto grau de contaminantes que os derivados deste possuem, os processos de hidrorrefino têm recebido atenção especial ao longo dos últimos por possibilitar a remoção de contaminantes e melhorar a margem de lucro das refinarias por tonar possível a obtenção de derivados de maior valor agregado. Entre esses o processo de hidrotratamento (HDT), no qual ocorre uma série de reações que utilizam o gás hidrogênio como reagente, foi o foco de estudo deste trabalho. Ao ser aplicado em correntes de Diesel o HDT realiza a remoção de contaminantes como enxofre e nitrogênio, aumentando a qualidade do mesmo. A unidade de HDT tem como principal equipamento o reator, que consiste em um leito com partículas sólidas, onde gás e líquido escoam em fluxo co-corrente ou em contracorrente. Apesar deste processo já ser maduro, o crescente aumento nas exigências de mercado demandam por melhorias no mesmo, a fim de atingir uma rentabilidade cada vez maior. Desta forma o uso de inferenciadores na estimação das variáveis tornaria possível o melhor acompanhamento do processo como também a implementação de novas estratégias de controle. Visto a relevância desse tema o presente trabalho abordou o desenvolvimento de observadores de estado para o reator do processo de HDT, para isto foi necessário a aquisição de dados do processo, o que foi conseguido através de um modelo matemático do reator, o qual foi denominado como planta virtual. Esta forneceu os dados para treinamento e validação dos inferenciadores aqui estudados: as redes neuronais e a neuro-fuzzy. No decorrer do trabalho foi definido o tempo de amostragem e o período de excitação do sinal através da menor constante de tempo. Para treinamento dos inferenciadores foi utilizado dois bancos de dados distintos, um com tempo de amostragem de 50s, onde este foi obtido pelo método da constante de tempo, e outro com amostragem de 10 minutos, em que as seguintes variáveis foram inferenciadas: concentração de compostos sulfurados, nitrogenados e olefinas na saída do reator. Dessas o melhor resultado foi obtido na inferência da concentração de compostos sulfurados realizada através da Rede Neuronal. Foi escolhida esta rede neuronal na implementação de um controlador PID e como modelo interno de um controlador NNMPC. O controlador PID cuja variável de controle foi à concentração de sulfurados foi chamado de controlador PID inferencial e os resultados deste se mostraram melhores do que os resultados obtidos pelo controlador NNMPC |
publishDate |
2012 |
dc.date.issued.fl_str_mv |
2012-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T18:08:23Z |
dc.date.available.fl_str_mv |
2014-06-12T18:08:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Cristiano Dos Santos Camelo, Marteson; Lucena, Sérgio. Contribuição no desenvolvimento de observadores de estado para o processo de hidrotratamento de óleo diesel (aplicação em controle inferencial). 2012. Dissertação (Mestrado). Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Pernambuco, Recife, 2012. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/6906 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000011q34 |
identifier_str_mv |
Cristiano Dos Santos Camelo, Marteson; Lucena, Sérgio. Contribuição no desenvolvimento de observadores de estado para o processo de hidrotratamento de óleo diesel (aplicação em controle inferencial). 2012. Dissertação (Mestrado). Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Pernambuco, Recife, 2012. ark:/64986/0013000011q34 |
url |
https://repositorio.ufpe.br/handle/123456789/6906 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/6906/4/arquivo9473_1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/6906/1/arquivo9473_1.pdf https://repositorio.ufpe.br/bitstream/123456789/6906/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/6906/3/arquivo9473_1.pdf.txt |
bitstream.checksum.fl_str_mv |
50364a2a7bd1cb065e09c37b37f1af4d 8de41a22d93f1f66a4f3481b45626f98 8a4605be74aa9ea9d79846c1fba20a33 ccfb40411e7cd0a3f3e63ac62300c7e1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172974536294400 |