Uma aplicação de mineração de dados ao programa bolsa escola da prefeitura da cidade do Recife

Detalhes bibliográficos
Autor(a) principal: Tabosa Florencio Filho, Roberto
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000004kb8
Texto Completo: https://repositorio.ufpe.br/handle/123456789/2440
Resumo: A tarefa de Mineração de Dados envolve um conjunto de técnicas de estatística e inteligência artificial com objetivo de descobrir informações não encontradas por ferramentas usualmente utilizadas para extração e armazenamento de dados em grandes bases de dados. A aplicação da Mineração de Dados pode ser realizada em qualquer área de conhecimento (Ciências Exatas, Humanas, Sociais, Biológica, Saúde, Agrária e outras) proporcionando ganhos de informações e conhecimentos, ora desconhecidos, em qualquer uma delas. Este trabalho apresenta uma aplicação de mineração de dados ao programa Bolsa Escola da Prefeitura da Cidade do Recife (PCR), particularmente na investigação da situação das famílias beneficiadas, com o objetivo de oferecer à administração municipal uma ferramenta de suporte à decisão capaz de aprimorar o processo de concessão de benefícios. Foi analisada uma massa de dados sócio-econômicos inicialmente de cerca de 60 mil famílias cadastradas no programa. Foi utilizada uma rede neural artificial MultiLayer Perceptron (MLP) para classificar as famílias beneficiadas com base nas suas características sócio-econômicas. A avaliação de desempenho e resultados obtidos, além da resposta da especialista no domínio de aplicação, demonstram a viabilidade dessa aplicação no processo de concessão do benefício ao Programa Bolsa Escola da Prefeitura da Cidade do Recife
id UFPE_47f4e75ebf92f6e24d801901ab9d1e3a
oai_identifier_str oai:repositorio.ufpe.br:123456789/2440
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling Tabosa Florencio Filho, RobertoJorge Leitão Adeodato, Paulo 2014-06-12T15:58:15Z2014-06-12T15:58:15Z2009-01-31Tabosa Florencio Filho, Roberto; Jorge Leitão Adeodato, Paulo. Uma aplicação de mineração de dados ao programa bolsa escola da prefeitura da cidade do Recife. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009.https://repositorio.ufpe.br/handle/123456789/2440ark:/64986/0013000004kb8A tarefa de Mineração de Dados envolve um conjunto de técnicas de estatística e inteligência artificial com objetivo de descobrir informações não encontradas por ferramentas usualmente utilizadas para extração e armazenamento de dados em grandes bases de dados. A aplicação da Mineração de Dados pode ser realizada em qualquer área de conhecimento (Ciências Exatas, Humanas, Sociais, Biológica, Saúde, Agrária e outras) proporcionando ganhos de informações e conhecimentos, ora desconhecidos, em qualquer uma delas. Este trabalho apresenta uma aplicação de mineração de dados ao programa Bolsa Escola da Prefeitura da Cidade do Recife (PCR), particularmente na investigação da situação das famílias beneficiadas, com o objetivo de oferecer à administração municipal uma ferramenta de suporte à decisão capaz de aprimorar o processo de concessão de benefícios. Foi analisada uma massa de dados sócio-econômicos inicialmente de cerca de 60 mil famílias cadastradas no programa. Foi utilizada uma rede neural artificial MultiLayer Perceptron (MLP) para classificar as famílias beneficiadas com base nas suas características sócio-econômicas. A avaliação de desempenho e resultados obtidos, além da resposta da especialista no domínio de aplicação, demonstram a viabilidade dessa aplicação no processo de concessão do benefício ao Programa Bolsa Escola da Prefeitura da Cidade do RecifeFaculdade dos GuararapesporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDescoberta de conhecimento em bases de dadosCross-industry standard process for data mining (CRISP-DM)Mineração de dadosRedes neuraisPrograma bolsa escola municipal (PBEM)Uma aplicação de mineração de dados ao programa bolsa escola da prefeitura da cidade do Recifeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALarquivo3328_1.pdfapplication/pdf1621200https://repositorio.ufpe.br/bitstream/123456789/2440/1/arquivo3328_1.pdfd29e5bc60f1421ccb8a8ca95694cb6d6MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/2440/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo3328_1.pdf.txtarquivo3328_1.pdf.txtExtracted texttext/plain151980https://repositorio.ufpe.br/bitstream/123456789/2440/3/arquivo3328_1.pdf.txtec7ca0eca2421b7e8ab6b44093717c5fMD53THUMBNAILarquivo3328_1.pdf.jpgarquivo3328_1.pdf.jpgGenerated Thumbnailimage/jpeg1378https://repositorio.ufpe.br/bitstream/123456789/2440/4/arquivo3328_1.pdf.jpg7039759a34d4c63c72bf2699135e7418MD54123456789/24402019-10-25 02:55:12.423oai:repositorio.ufpe.br:123456789/2440Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:55:12Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Uma aplicação de mineração de dados ao programa bolsa escola da prefeitura da cidade do Recife
title Uma aplicação de mineração de dados ao programa bolsa escola da prefeitura da cidade do Recife
spellingShingle Uma aplicação de mineração de dados ao programa bolsa escola da prefeitura da cidade do Recife
Tabosa Florencio Filho, Roberto
Descoberta de conhecimento em bases de dados
Cross-industry standard process for data mining (CRISP-DM)
Mineração de dados
Redes neurais
Programa bolsa escola municipal (PBEM)
title_short Uma aplicação de mineração de dados ao programa bolsa escola da prefeitura da cidade do Recife
title_full Uma aplicação de mineração de dados ao programa bolsa escola da prefeitura da cidade do Recife
title_fullStr Uma aplicação de mineração de dados ao programa bolsa escola da prefeitura da cidade do Recife
title_full_unstemmed Uma aplicação de mineração de dados ao programa bolsa escola da prefeitura da cidade do Recife
title_sort Uma aplicação de mineração de dados ao programa bolsa escola da prefeitura da cidade do Recife
author Tabosa Florencio Filho, Roberto
author_facet Tabosa Florencio Filho, Roberto
author_role author
dc.contributor.author.fl_str_mv Tabosa Florencio Filho, Roberto
dc.contributor.advisor1.fl_str_mv Jorge Leitão Adeodato, Paulo
contributor_str_mv Jorge Leitão Adeodato, Paulo
dc.subject.por.fl_str_mv Descoberta de conhecimento em bases de dados
Cross-industry standard process for data mining (CRISP-DM)
Mineração de dados
Redes neurais
Programa bolsa escola municipal (PBEM)
topic Descoberta de conhecimento em bases de dados
Cross-industry standard process for data mining (CRISP-DM)
Mineração de dados
Redes neurais
Programa bolsa escola municipal (PBEM)
description A tarefa de Mineração de Dados envolve um conjunto de técnicas de estatística e inteligência artificial com objetivo de descobrir informações não encontradas por ferramentas usualmente utilizadas para extração e armazenamento de dados em grandes bases de dados. A aplicação da Mineração de Dados pode ser realizada em qualquer área de conhecimento (Ciências Exatas, Humanas, Sociais, Biológica, Saúde, Agrária e outras) proporcionando ganhos de informações e conhecimentos, ora desconhecidos, em qualquer uma delas. Este trabalho apresenta uma aplicação de mineração de dados ao programa Bolsa Escola da Prefeitura da Cidade do Recife (PCR), particularmente na investigação da situação das famílias beneficiadas, com o objetivo de oferecer à administração municipal uma ferramenta de suporte à decisão capaz de aprimorar o processo de concessão de benefícios. Foi analisada uma massa de dados sócio-econômicos inicialmente de cerca de 60 mil famílias cadastradas no programa. Foi utilizada uma rede neural artificial MultiLayer Perceptron (MLP) para classificar as famílias beneficiadas com base nas suas características sócio-econômicas. A avaliação de desempenho e resultados obtidos, além da resposta da especialista no domínio de aplicação, demonstram a viabilidade dessa aplicação no processo de concessão do benefício ao Programa Bolsa Escola da Prefeitura da Cidade do Recife
publishDate 2009
dc.date.issued.fl_str_mv 2009-01-31
dc.date.accessioned.fl_str_mv 2014-06-12T15:58:15Z
dc.date.available.fl_str_mv 2014-06-12T15:58:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Tabosa Florencio Filho, Roberto; Jorge Leitão Adeodato, Paulo. Uma aplicação de mineração de dados ao programa bolsa escola da prefeitura da cidade do Recife. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/2440
dc.identifier.dark.fl_str_mv ark:/64986/0013000004kb8
identifier_str_mv Tabosa Florencio Filho, Roberto; Jorge Leitão Adeodato, Paulo. Uma aplicação de mineração de dados ao programa bolsa escola da prefeitura da cidade do Recife. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009.
ark:/64986/0013000004kb8
url https://repositorio.ufpe.br/handle/123456789/2440
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/2440/1/arquivo3328_1.pdf
https://repositorio.ufpe.br/bitstream/123456789/2440/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/2440/3/arquivo3328_1.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/2440/4/arquivo3328_1.pdf.jpg
bitstream.checksum.fl_str_mv d29e5bc60f1421ccb8a8ca95694cb6d6
8a4605be74aa9ea9d79846c1fba20a33
ec7ca0eca2421b7e8ab6b44093717c5f
7039759a34d4c63c72bf2699135e7418
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172720803971072