Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000hz69 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/36676 |
Resumo: | In recent years, deep convolutional neural networks has overcome several challenges in the Ąeld of Computer Vision and Image Processing. Particularly, pixel-level tasks such as image segmentation, restoration, generation, enhancement, and inpainting have shown signiĄcant improvements thanks to the advances of the technique. In general, training a neural network is similar to solving a complex optimization problem where the unknowns are the parameters of the model, and the goal is to transform vectors from the input domain to the output set. This optimization process can be seen as a directed search through an error surface where the optimal set of weights is the one that gives a minimal error over a data sample. Since reaching the global minimum is very difficult, the task is simpliĄed to Ąnd an acceptable solution for the task. However, because of the high dimensionality of the solution space, the non-convexity of the error surface, and the presence of many Ćat regions and saddle points in the surface, the process of training a neural network is generally addressed by carefully tuning the hyperparameters of the model and annotating a vast training dataset. The three core components of the cost function used for supervised training are the architecture, the data, and the loss function. Despite the emergence of many new architectures, Ąnding better networks to solve a task is difficult. The modeling of new loss functions is a more feasible approach to improve the optimization and, therefore, Ąnd better-performed models. This work proposes to use a given network, and concentrates on the designing of loss functions for pixel-level regression and pixel-level classiĄcation problems, namely, image segmentation, to improve results. The rationale behind proposed loss functions is that the incorporation of priors in the form of regularization terms helps to distinguish between similarly-performed models, like the ones found in Ćat regions. New pre-processing and post-processing techniques are also introduced in each case to assist in solving real-life problems. The applicability of pixel-level classiĄcation loss functions in instance segmentation task with full and weak supervision was studied using challenging biological image datasets with isolated and clustered cells for both 2D and 3D. A pixel-level regression loss function was applied to the multi-focus image fusion problem. Experimental results for instance segmentation and image restoration tasks suggest an improvement of the performance when compared to other competitive loss functions. 3D segmentation and multi-focus image fusion approaches showed low execution time. |
id |
UFPE_5536f828d98aaade9912d54a9b2efb2a |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/36676 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
GUERRERO PEÑA, Fidel Alejandrohttp://lattes.cnpq.br/5830491865913075http://lattes.cnpq.br/3084134533707587http://lattes.cnpq.br/5943634209341438REN, Tsang IngVASCONCELOS, Germano Crispim2020-02-28T16:48:16Z2020-02-28T16:48:16Z2019-11-27GUERRERO PEÑA, Fidel Alejandro. Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019.https://repositorio.ufpe.br/handle/123456789/36676ark:/64986/001300000hz69In recent years, deep convolutional neural networks has overcome several challenges in the Ąeld of Computer Vision and Image Processing. Particularly, pixel-level tasks such as image segmentation, restoration, generation, enhancement, and inpainting have shown signiĄcant improvements thanks to the advances of the technique. In general, training a neural network is similar to solving a complex optimization problem where the unknowns are the parameters of the model, and the goal is to transform vectors from the input domain to the output set. This optimization process can be seen as a directed search through an error surface where the optimal set of weights is the one that gives a minimal error over a data sample. Since reaching the global minimum is very difficult, the task is simpliĄed to Ąnd an acceptable solution for the task. However, because of the high dimensionality of the solution space, the non-convexity of the error surface, and the presence of many Ćat regions and saddle points in the surface, the process of training a neural network is generally addressed by carefully tuning the hyperparameters of the model and annotating a vast training dataset. The three core components of the cost function used for supervised training are the architecture, the data, and the loss function. Despite the emergence of many new architectures, Ąnding better networks to solve a task is difficult. The modeling of new loss functions is a more feasible approach to improve the optimization and, therefore, Ąnd better-performed models. This work proposes to use a given network, and concentrates on the designing of loss functions for pixel-level regression and pixel-level classiĄcation problems, namely, image segmentation, to improve results. The rationale behind proposed loss functions is that the incorporation of priors in the form of regularization terms helps to distinguish between similarly-performed models, like the ones found in Ćat regions. New pre-processing and post-processing techniques are also introduced in each case to assist in solving real-life problems. The applicability of pixel-level classiĄcation loss functions in instance segmentation task with full and weak supervision was studied using challenging biological image datasets with isolated and clustered cells for both 2D and 3D. A pixel-level regression loss function was applied to the multi-focus image fusion problem. Experimental results for instance segmentation and image restoration tasks suggest an improvement of the performance when compared to other competitive loss functions. 3D segmentation and multi-focus image fusion approaches showed low execution time.FACEPENos últimos anos, os métodos baseados em redes convolucionais profundas superaram vários desafios no campo de Visão Computacional e Processamento de Imagens. Particularmente, tarefas em nível de pixel, como segmentação, restauração, geração, inpainting, e recuperação de informação em imagens, mostraram melhorias significativas graças ao avanço das redes neurais profundas. No geral, o treinamento de uma rede neural é o mesmo que resolver um problema de otimização complexo, onde as incógnitas são os parâmetros do modelo, e o objetivo é transformar vetores do domínio de entrada para o conjunto de saída. Esse processo de otimização pode ser visto como uma busca direcionada em uma superfície de erro, em que o conjunto ideal de pesos é aquele que gera um erro mínimo em uma amostra de dados. Dado que chegar ao mínimo global é muito difícil, a tarefa é simplificada a encontrar uma solução aceitável para uma tarefa dada. No entanto, devido à alta dimensionalidade do espaço da solução, a não-convexidade da superfície de erro, e a presença de muitas planícies, o processo de treinamento de uma rede neural é geralmente tratado por meio do ajuste cuidadoso dos hiperparâmetros do modelo e criando anotações de um amplo conjunto de dados de treinamento. As três componentes principais da função de custo usada no treinamento supervisionado são a arquitetura, os dados, e a função de perda. Apesar do surgimento de muitas novas arquiteturas, encontrar modelos com desempenho aceitável é muito difícil. A modelagem de funções de perda é uma abordagem mais efetiva para melhorar o processo de otimização e, por consequência, achar modelos com melhor desempenho. Este trabalho propõe-se a usar uma rede dada e concentra-se na proposição de funções de perda para problemas de regressão e classificação em nível de pixel, também conhecida como segmentação de imagem, visando a melhorar o desempenho. A lógica por trás das funções de perda propostas é que a incorporação de priors em forma de regularização ajuda a diferenciar modelos com desempenho semelhante. Novas técnicas de pré-processamento e pós-processamento também são propostas em cada caso para ajudar na solução de problemas reais. A aplicabilidade das funções de perda de classificação em nível de pixel na tarefa de segmentação de instância com supervisão completa e fraca foi estudada usando conjuntos de dados desafiadores de imagem biológica com células isoladas e agrupadas para 2D e 3D. A função de perda de regressão em nível de pixel foi aplicada ao problema de fusão de imagem com múltiplos focos. Os resultados da experimentação em tarefas de segmentação de instâncias e restauração de imagens sugerem uma melhoria do desempenho quando comparado com funções de perda semelhantes. Nas propostas de segmentação 3D e fusão de imagens com múltiplos focos, foi observado um baixo tempo de execução.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência ComputacionalRedes Convolucionais ProfundasFunção de PerdaSegmentação de InstânciasLoss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETEXTTESE Fidel Alejandro Guerrero Pena.pdf.txtTESE Fidel Alejandro Guerrero Pena.pdf.txtExtracted texttext/plain234259https://repositorio.ufpe.br/bitstream/123456789/36676/4/TESE%20Fidel%20Alejandro%20Guerrero%20Pena.pdf.txtf65205d22f22dd0e9c7e87b774fbb659MD54THUMBNAILTESE Fidel Alejandro Guerrero Pena.pdf.jpgTESE Fidel Alejandro Guerrero Pena.pdf.jpgGenerated Thumbnailimage/jpeg1201https://repositorio.ufpe.br/bitstream/123456789/36676/5/TESE%20Fidel%20Alejandro%20Guerrero%20Pena.pdf.jpg41308e4b370bf88e48aa0fbdb27a429eMD55ORIGINALTESE Fidel Alejandro Guerrero Pena.pdfTESE Fidel Alejandro Guerrero Pena.pdfapplication/pdf8544751https://repositorio.ufpe.br/bitstream/123456789/36676/1/TESE%20Fidel%20Alejandro%20Guerrero%20Pena.pdfeef750cb5ad14301592ab07188cee9a3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/36676/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/36676/3/license.txtbd573a5ca8288eb7272482765f819534MD53123456789/366762020-02-29 02:15:54.849oai:repositorio.ufpe.br:123456789/36676TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-02-29T05:15:54Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks |
title |
Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks |
spellingShingle |
Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks GUERRERO PEÑA, Fidel Alejandro Inteligência Computacional Redes Convolucionais Profundas Função de Perda Segmentação de Instâncias |
title_short |
Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks |
title_full |
Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks |
title_fullStr |
Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks |
title_full_unstemmed |
Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks |
title_sort |
Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks |
author |
GUERRERO PEÑA, Fidel Alejandro |
author_facet |
GUERRERO PEÑA, Fidel Alejandro |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/5830491865913075 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/3084134533707587 |
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/5943634209341438 |
dc.contributor.author.fl_str_mv |
GUERRERO PEÑA, Fidel Alejandro |
dc.contributor.advisor1.fl_str_mv |
REN, Tsang Ing |
dc.contributor.advisor-co1.fl_str_mv |
VASCONCELOS, Germano Crispim |
contributor_str_mv |
REN, Tsang Ing VASCONCELOS, Germano Crispim |
dc.subject.por.fl_str_mv |
Inteligência Computacional Redes Convolucionais Profundas Função de Perda Segmentação de Instâncias |
topic |
Inteligência Computacional Redes Convolucionais Profundas Função de Perda Segmentação de Instâncias |
description |
In recent years, deep convolutional neural networks has overcome several challenges in the Ąeld of Computer Vision and Image Processing. Particularly, pixel-level tasks such as image segmentation, restoration, generation, enhancement, and inpainting have shown signiĄcant improvements thanks to the advances of the technique. In general, training a neural network is similar to solving a complex optimization problem where the unknowns are the parameters of the model, and the goal is to transform vectors from the input domain to the output set. This optimization process can be seen as a directed search through an error surface where the optimal set of weights is the one that gives a minimal error over a data sample. Since reaching the global minimum is very difficult, the task is simpliĄed to Ąnd an acceptable solution for the task. However, because of the high dimensionality of the solution space, the non-convexity of the error surface, and the presence of many Ćat regions and saddle points in the surface, the process of training a neural network is generally addressed by carefully tuning the hyperparameters of the model and annotating a vast training dataset. The three core components of the cost function used for supervised training are the architecture, the data, and the loss function. Despite the emergence of many new architectures, Ąnding better networks to solve a task is difficult. The modeling of new loss functions is a more feasible approach to improve the optimization and, therefore, Ąnd better-performed models. This work proposes to use a given network, and concentrates on the designing of loss functions for pixel-level regression and pixel-level classiĄcation problems, namely, image segmentation, to improve results. The rationale behind proposed loss functions is that the incorporation of priors in the form of regularization terms helps to distinguish between similarly-performed models, like the ones found in Ćat regions. New pre-processing and post-processing techniques are also introduced in each case to assist in solving real-life problems. The applicability of pixel-level classiĄcation loss functions in instance segmentation task with full and weak supervision was studied using challenging biological image datasets with isolated and clustered cells for both 2D and 3D. A pixel-level regression loss function was applied to the multi-focus image fusion problem. Experimental results for instance segmentation and image restoration tasks suggest an improvement of the performance when compared to other competitive loss functions. 3D segmentation and multi-focus image fusion approaches showed low execution time. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-11-27 |
dc.date.accessioned.fl_str_mv |
2020-02-28T16:48:16Z |
dc.date.available.fl_str_mv |
2020-02-28T16:48:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GUERRERO PEÑA, Fidel Alejandro. Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/36676 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000hz69 |
identifier_str_mv |
GUERRERO PEÑA, Fidel Alejandro. Loss Function Modeling for Deep Neural Networks Applied to Pixel-level Tasks. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019. ark:/64986/001300000hz69 |
url |
https://repositorio.ufpe.br/handle/123456789/36676 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/36676/4/TESE%20Fidel%20Alejandro%20Guerrero%20Pena.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/36676/5/TESE%20Fidel%20Alejandro%20Guerrero%20Pena.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/36676/1/TESE%20Fidel%20Alejandro%20Guerrero%20Pena.pdf https://repositorio.ufpe.br/bitstream/123456789/36676/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/36676/3/license.txt |
bitstream.checksum.fl_str_mv |
f65205d22f22dd0e9c7e87b774fbb659 41308e4b370bf88e48aa0fbdb27a429e eef750cb5ad14301592ab07188cee9a3 e39d27027a6cc9cb039ad269a5db8e34 bd573a5ca8288eb7272482765f819534 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172832931348480 |