Variable weighted fuzzy clustering algorithm for qualitative data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000010gz0 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/53504 |
Resumo: | This work focuses on the clustering methods within unsupervised learning, a challenging sub-division of Machine Learning where there is no response variable available. Clustering is a technique for finding groups in a dataset, where the observations in each group are similar to each other and different from those in other groups. The K-Means method, recognized as the most well-known and widely used clustering technique, efficiently handles quantitative variables, like many other existing clustering methods. However, the K-Means algorithm cannot be used with qualitative variables, such as gender or education level. To overcome this limitation, the K-Modes method was proposed, which uses modes instead of means to represent the clusters. The existing partitional clustering algorithms without variable weighting have a limitation in that they assign equal importance to all variables. It can be problematic when clustering high-dimensional, sparse data where the characterization of cluster partitions can be explained by a particular subset of variables. To address this issue, subspace clustering techniques and adaptive distances have been proposed, with the latter being derived from constraints based on the sum and product of the weights relative to the importance of the variables. This work proposes a new fuzzy clustering algorithm for qualitative data based on adaptive distances, which demonstrates improved performance compared to conventional methods. The local adaptive distances, which assign different weights to each variable across the clusters, perform better for datasets with high levels of dispersion and overlap of classes. The results extend the capabilities of existing clustering algorithms based on adaptive distances. |
id |
UFPE_62613c1907c67db2d5d20f37ecb188c1 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/53504 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
TEOTONIO, Gabriel Harrison Fidelishttp://lattes.cnpq.br/3723910313293363http://lattes.cnpq.br/9289080285504453http://lattes.cnpq.br/7674916684282039SOUZA, Renata Maria Cardoso Rodrigues deAMARAL, Getúlio José Amorim do2023-11-08T17:37:34Z2023-11-08T17:37:34Z2023-05-25TEOTONIO, Gabriel Harrison Fidelis. Variable weighted fuzzy clustering algorithm for qualitative data. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/53504ark:/64986/0013000010gz0This work focuses on the clustering methods within unsupervised learning, a challenging sub-division of Machine Learning where there is no response variable available. Clustering is a technique for finding groups in a dataset, where the observations in each group are similar to each other and different from those in other groups. The K-Means method, recognized as the most well-known and widely used clustering technique, efficiently handles quantitative variables, like many other existing clustering methods. However, the K-Means algorithm cannot be used with qualitative variables, such as gender or education level. To overcome this limitation, the K-Modes method was proposed, which uses modes instead of means to represent the clusters. The existing partitional clustering algorithms without variable weighting have a limitation in that they assign equal importance to all variables. It can be problematic when clustering high-dimensional, sparse data where the characterization of cluster partitions can be explained by a particular subset of variables. To address this issue, subspace clustering techniques and adaptive distances have been proposed, with the latter being derived from constraints based on the sum and product of the weights relative to the importance of the variables. This work proposes a new fuzzy clustering algorithm for qualitative data based on adaptive distances, which demonstrates improved performance compared to conventional methods. The local adaptive distances, which assign different weights to each variable across the clusters, perform better for datasets with high levels of dispersion and overlap of classes. The results extend the capabilities of existing clustering algorithms based on adaptive distances.CNPqEste trabalho se concentra nos métodos de agrupamento dentro do aprendizado não supervisionado, uma subdivisão desafiadora da Aprendizagem de Máquina onde não há variável resposta disponível. O agrupamento é uma técnica para encontrar grupos em um conjunto de dados, onde as observações em cada grupo são semelhantes umas às outras e diferentes das observações em outros grupos. O método K-Means, reconhecido como a técnica de agrupamento mais conhecida e amplamente utilizada, lida de forma eficiente com variáveis quantitativas, assim como muitos outros métodos de agrupamento existentes. No entanto, o algoritmo K-Means não pode ser usado com variáveis qualitativas, como gênero ou nível de educação. Para superar esta limitação, foi proposto o método K-Modes, que usa modas em vez de médias para representar os grupos. Os algoritmos de agrupamento particional existentes sem ponderação variável têm a limitação de atribuir importância igual a todas as variáveis. Isso pode ser problemático ao agrupar dados de alta dimensão e esparsos, onde a caracterização das partições do agrupamento pode ser explicada por um subconjunto particular de variáveis. Para abordar este problema, foram propostas técnicas de agrupamento de subespaço e distâncias adaptativas, sendo estas últimas derivadas a partir de restrições baseadas na soma e no produto dos pesos relativos à importância das variáveis. Este trabalho propõe um novo algoritmo de agrupamento difuso para dados qualitativos baseado em distâncias adaptativas, o qual demonstra desempenho melhorado em comparação aos métodos convencionais. As distâncias adaptativas locais, que atribuem pesos diferentes para cada variável em relação aos grupos, apresentam melhor desempenho para conjuntos de dados com altos níveis de dispersão e sobreposição de classes. Os resultados ampliam as capacidades dos algoritmos de agrupamento existentes baseados em distâncias adaptativas.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessInteligência computacionalAgrupamentoVariable weighted fuzzy clustering algorithm for qualitative datainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPELICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/53504/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53ORIGINALDISSERTAÇAO Gabriel Harrison Fidelis Teotonio.pdfDISSERTAÇAO Gabriel Harrison Fidelis Teotonio.pdfapplication/pdf850600https://repositorio.ufpe.br/bitstream/123456789/53504/1/DISSERTA%c3%87AO%20Gabriel%20Harrison%20Fidelis%20Teotonio.pdf9db1e0aab784f7835ec207d58bb55c9aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/53504/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52TEXTDISSERTAÇAO Gabriel Harrison Fidelis Teotonio.pdf.txtDISSERTAÇAO Gabriel Harrison Fidelis Teotonio.pdf.txtExtracted texttext/plain123623https://repositorio.ufpe.br/bitstream/123456789/53504/4/DISSERTA%c3%87AO%20Gabriel%20Harrison%20Fidelis%20Teotonio.pdf.txt7f766fb275a3fd223c214a02792b5abbMD54THUMBNAILDISSERTAÇAO Gabriel Harrison Fidelis Teotonio.pdf.jpgDISSERTAÇAO Gabriel Harrison Fidelis Teotonio.pdf.jpgGenerated Thumbnailimage/jpeg1232https://repositorio.ufpe.br/bitstream/123456789/53504/5/DISSERTA%c3%87AO%20Gabriel%20Harrison%20Fidelis%20Teotonio.pdf.jpg295f459b2ebe7ec8b5843ff8d11df8a4MD55123456789/535042023-11-09 02:24:41.966oai:repositorio.ufpe.br:123456789/53504VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-11-09T05:24:41Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Variable weighted fuzzy clustering algorithm for qualitative data |
title |
Variable weighted fuzzy clustering algorithm for qualitative data |
spellingShingle |
Variable weighted fuzzy clustering algorithm for qualitative data TEOTONIO, Gabriel Harrison Fidelis Inteligência computacional Agrupamento |
title_short |
Variable weighted fuzzy clustering algorithm for qualitative data |
title_full |
Variable weighted fuzzy clustering algorithm for qualitative data |
title_fullStr |
Variable weighted fuzzy clustering algorithm for qualitative data |
title_full_unstemmed |
Variable weighted fuzzy clustering algorithm for qualitative data |
title_sort |
Variable weighted fuzzy clustering algorithm for qualitative data |
author |
TEOTONIO, Gabriel Harrison Fidelis |
author_facet |
TEOTONIO, Gabriel Harrison Fidelis |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/3723910313293363 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9289080285504453 |
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/7674916684282039 |
dc.contributor.author.fl_str_mv |
TEOTONIO, Gabriel Harrison Fidelis |
dc.contributor.advisor1.fl_str_mv |
SOUZA, Renata Maria Cardoso Rodrigues de |
dc.contributor.advisor-co1.fl_str_mv |
AMARAL, Getúlio José Amorim do |
contributor_str_mv |
SOUZA, Renata Maria Cardoso Rodrigues de AMARAL, Getúlio José Amorim do |
dc.subject.por.fl_str_mv |
Inteligência computacional Agrupamento |
topic |
Inteligência computacional Agrupamento |
description |
This work focuses on the clustering methods within unsupervised learning, a challenging sub-division of Machine Learning where there is no response variable available. Clustering is a technique for finding groups in a dataset, where the observations in each group are similar to each other and different from those in other groups. The K-Means method, recognized as the most well-known and widely used clustering technique, efficiently handles quantitative variables, like many other existing clustering methods. However, the K-Means algorithm cannot be used with qualitative variables, such as gender or education level. To overcome this limitation, the K-Modes method was proposed, which uses modes instead of means to represent the clusters. The existing partitional clustering algorithms without variable weighting have a limitation in that they assign equal importance to all variables. It can be problematic when clustering high-dimensional, sparse data where the characterization of cluster partitions can be explained by a particular subset of variables. To address this issue, subspace clustering techniques and adaptive distances have been proposed, with the latter being derived from constraints based on the sum and product of the weights relative to the importance of the variables. This work proposes a new fuzzy clustering algorithm for qualitative data based on adaptive distances, which demonstrates improved performance compared to conventional methods. The local adaptive distances, which assign different weights to each variable across the clusters, perform better for datasets with high levels of dispersion and overlap of classes. The results extend the capabilities of existing clustering algorithms based on adaptive distances. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-11-08T17:37:34Z |
dc.date.available.fl_str_mv |
2023-11-08T17:37:34Z |
dc.date.issued.fl_str_mv |
2023-05-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
TEOTONIO, Gabriel Harrison Fidelis. Variable weighted fuzzy clustering algorithm for qualitative data. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/53504 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000010gz0 |
identifier_str_mv |
TEOTONIO, Gabriel Harrison Fidelis. Variable weighted fuzzy clustering algorithm for qualitative data. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023. ark:/64986/0013000010gz0 |
url |
https://repositorio.ufpe.br/handle/123456789/53504 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
embargoedAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/53504/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/53504/1/DISSERTA%c3%87AO%20Gabriel%20Harrison%20Fidelis%20Teotonio.pdf https://repositorio.ufpe.br/bitstream/123456789/53504/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/53504/4/DISSERTA%c3%87AO%20Gabriel%20Harrison%20Fidelis%20Teotonio.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/53504/5/DISSERTA%c3%87AO%20Gabriel%20Harrison%20Fidelis%20Teotonio.pdf.jpg |
bitstream.checksum.fl_str_mv |
5e89a1613ddc8510c6576f4b23a78973 9db1e0aab784f7835ec207d58bb55c9a e39d27027a6cc9cb039ad269a5db8e34 7f766fb275a3fd223c214a02792b5abb 295f459b2ebe7ec8b5843ff8d11df8a4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172963303948288 |