Utilizando Spatial Transformer Networks no agrupamento de imagens baseado em Deep Adaptive Clustering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000002dzd |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/35371 |
Resumo: | O agrupamento de imagens é uma tarefa importante e desafiadora na aprendizagem de máquina. Como na maioria das áreas de processamento de imagens, as últimas melhorias foram obtidas a partir de modelos baseados em aprendizagem profunda. No entanto, os métodos clássicos de aprendizagem profunda têm dificuldade para lidar com transformações espaciais nas imagens de entrada como, por exemplo, escala e rotação. Nesta dissertação, propomos o uso de técnicas de atenção visual para reduzir este problema em métodos de agrupamento profundo de imagens. Nossa hipótese de pesquisa sugere que adicionar camadas de atenção visual em arquiteturas de deep image clustering pode tornar os modelos robustos a pequenas variações espaciais nos dados de entrada da rede e melhorar seu desempenho. Avaliamos a combinação de um modelo de agrupamento profundo chamado Deep Adaptive Clustering (DAC) com o módulo de atenção visual Spatial Transformer Networks (STN). O modelo proposto é avaliado nos conjuntos de dados MNIST e FashionMNIST e superou o modelo de referência nos experimentos realizados. Adicionalmente realizamos diversos experimentos qualitativos para investigar o funcionamento da arquitetura proposta. |
id |
UFPE_8206114006720448a19fbb9c989d5559 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/35371 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SOUZA, Thiago Vinicius Machado dehttp://lattes.cnpq.br/9835223450599059http://lattes.cnpq.br/1244195230407619ZANCHETTIN, Cleber2019-11-29T17:32:54Z2019-11-29T17:32:54Z2019-02-26SOUZA, Thiago Vinicius Machado de. Utilizando Spatial Transformer Networks no agrupamento de imagens baseado em Deep Adaptive Clustering. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019.https://repositorio.ufpe.br/handle/123456789/35371ark:/64986/0013000002dzdO agrupamento de imagens é uma tarefa importante e desafiadora na aprendizagem de máquina. Como na maioria das áreas de processamento de imagens, as últimas melhorias foram obtidas a partir de modelos baseados em aprendizagem profunda. No entanto, os métodos clássicos de aprendizagem profunda têm dificuldade para lidar com transformações espaciais nas imagens de entrada como, por exemplo, escala e rotação. Nesta dissertação, propomos o uso de técnicas de atenção visual para reduzir este problema em métodos de agrupamento profundo de imagens. Nossa hipótese de pesquisa sugere que adicionar camadas de atenção visual em arquiteturas de deep image clustering pode tornar os modelos robustos a pequenas variações espaciais nos dados de entrada da rede e melhorar seu desempenho. Avaliamos a combinação de um modelo de agrupamento profundo chamado Deep Adaptive Clustering (DAC) com o módulo de atenção visual Spatial Transformer Networks (STN). O modelo proposto é avaliado nos conjuntos de dados MNIST e FashionMNIST e superou o modelo de referência nos experimentos realizados. Adicionalmente realizamos diversos experimentos qualitativos para investigar o funcionamento da arquitetura proposta.Image clustering is an important but challenging task in machine learning. As in most image processing areas, the latest improvements came from models based on the deep learning approach. However, classical deep learning methods have problems to deal with spatial image transformations like scale and rotation in input images. In this dissertation, we propose the use of visual attention techniques to reduce this problem in deep image clustering methods. Our research hypothesis suggests that adding visual attention layers to deep image clustering architectures can make models more robusts to small spatial variations in the input data of the network and improve their performance. We evaluate the combination of a deep image clustering model called Deep Adaptive Clustering (DAC) with the visual attention module Spatial Transformer Networks (STN). The proposed model is evaluated in the datasets MNIST and FashionMNIST and outperformed the baseline model in the performed experiments. In addition, we performed several qualitative experiments to investigate the operation of the proposed architecture.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência computacionalAgrupamento de imagensUtilizando Spatial Transformer Networks no agrupamento de imagens baseado em Deep Adaptive Clusteringinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALDISSERTAÇÃO Thiago Vinicius Machado de Souza.pdfDISSERTAÇÃO Thiago Vinicius Machado de Souza.pdfapplication/pdf5063002https://repositorio.ufpe.br/bitstream/123456789/35371/1/DISSERTA%c3%87%c3%83O%20Thiago%20Vinicius%20Machado%20de%20Souza.pdf93143f80feb06a7a604398a958804950MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/35371/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufpe.br/bitstream/123456789/35371/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTDISSERTAÇÃO Thiago Vinicius Machado de Souza.pdf.txtDISSERTAÇÃO Thiago Vinicius Machado de Souza.pdf.txtExtracted texttext/plain144846https://repositorio.ufpe.br/bitstream/123456789/35371/4/DISSERTA%c3%87%c3%83O%20Thiago%20Vinicius%20Machado%20de%20Souza.pdf.txt498cc2e1850f5b732e6363822fac8f9fMD54THUMBNAILDISSERTAÇÃO Thiago Vinicius Machado de Souza.pdf.jpgDISSERTAÇÃO Thiago Vinicius Machado de Souza.pdf.jpgGenerated Thumbnailimage/jpeg1272https://repositorio.ufpe.br/bitstream/123456789/35371/5/DISSERTA%c3%87%c3%83O%20Thiago%20Vinicius%20Machado%20de%20Souza.pdf.jpg66950706e62f3f729a0efde62356a68eMD55123456789/353712019-11-30 02:10:25.474oai:repositorio.ufpe.br:123456789/35371Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-11-30T05:10:25Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Utilizando Spatial Transformer Networks no agrupamento de imagens baseado em Deep Adaptive Clustering |
title |
Utilizando Spatial Transformer Networks no agrupamento de imagens baseado em Deep Adaptive Clustering |
spellingShingle |
Utilizando Spatial Transformer Networks no agrupamento de imagens baseado em Deep Adaptive Clustering SOUZA, Thiago Vinicius Machado de Inteligência computacional Agrupamento de imagens |
title_short |
Utilizando Spatial Transformer Networks no agrupamento de imagens baseado em Deep Adaptive Clustering |
title_full |
Utilizando Spatial Transformer Networks no agrupamento de imagens baseado em Deep Adaptive Clustering |
title_fullStr |
Utilizando Spatial Transformer Networks no agrupamento de imagens baseado em Deep Adaptive Clustering |
title_full_unstemmed |
Utilizando Spatial Transformer Networks no agrupamento de imagens baseado em Deep Adaptive Clustering |
title_sort |
Utilizando Spatial Transformer Networks no agrupamento de imagens baseado em Deep Adaptive Clustering |
author |
SOUZA, Thiago Vinicius Machado de |
author_facet |
SOUZA, Thiago Vinicius Machado de |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9835223450599059 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/1244195230407619 |
dc.contributor.author.fl_str_mv |
SOUZA, Thiago Vinicius Machado de |
dc.contributor.advisor1.fl_str_mv |
ZANCHETTIN, Cleber |
contributor_str_mv |
ZANCHETTIN, Cleber |
dc.subject.por.fl_str_mv |
Inteligência computacional Agrupamento de imagens |
topic |
Inteligência computacional Agrupamento de imagens |
description |
O agrupamento de imagens é uma tarefa importante e desafiadora na aprendizagem de máquina. Como na maioria das áreas de processamento de imagens, as últimas melhorias foram obtidas a partir de modelos baseados em aprendizagem profunda. No entanto, os métodos clássicos de aprendizagem profunda têm dificuldade para lidar com transformações espaciais nas imagens de entrada como, por exemplo, escala e rotação. Nesta dissertação, propomos o uso de técnicas de atenção visual para reduzir este problema em métodos de agrupamento profundo de imagens. Nossa hipótese de pesquisa sugere que adicionar camadas de atenção visual em arquiteturas de deep image clustering pode tornar os modelos robustos a pequenas variações espaciais nos dados de entrada da rede e melhorar seu desempenho. Avaliamos a combinação de um modelo de agrupamento profundo chamado Deep Adaptive Clustering (DAC) com o módulo de atenção visual Spatial Transformer Networks (STN). O modelo proposto é avaliado nos conjuntos de dados MNIST e FashionMNIST e superou o modelo de referência nos experimentos realizados. Adicionalmente realizamos diversos experimentos qualitativos para investigar o funcionamento da arquitetura proposta. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-11-29T17:32:54Z |
dc.date.available.fl_str_mv |
2019-11-29T17:32:54Z |
dc.date.issued.fl_str_mv |
2019-02-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SOUZA, Thiago Vinicius Machado de. Utilizando Spatial Transformer Networks no agrupamento de imagens baseado em Deep Adaptive Clustering. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/35371 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000002dzd |
identifier_str_mv |
SOUZA, Thiago Vinicius Machado de. Utilizando Spatial Transformer Networks no agrupamento de imagens baseado em Deep Adaptive Clustering. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019. ark:/64986/0013000002dzd |
url |
https://repositorio.ufpe.br/handle/123456789/35371 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/35371/1/DISSERTA%c3%87%c3%83O%20Thiago%20Vinicius%20Machado%20de%20Souza.pdf https://repositorio.ufpe.br/bitstream/123456789/35371/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/35371/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/35371/4/DISSERTA%c3%87%c3%83O%20Thiago%20Vinicius%20Machado%20de%20Souza.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/35371/5/DISSERTA%c3%87%c3%83O%20Thiago%20Vinicius%20Machado%20de%20Souza.pdf.jpg |
bitstream.checksum.fl_str_mv |
93143f80feb06a7a604398a958804950 e39d27027a6cc9cb039ad269a5db8e34 8a4605be74aa9ea9d79846c1fba20a33 498cc2e1850f5b732e6363822fac8f9f 66950706e62f3f729a0efde62356a68e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172699954085888 |