An ensemble learning method for segmentation fusion

Detalhes bibliográficos
Autor(a) principal: PENA, Carlos Henrique Caloete
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000006r9p
Texto Completo: https://repositorio.ufpe.br/handle/123456789/47250
Resumo: The segmentation of cells present in microscope images is an essential step to automate many tasks, including cell counting, analysis of the cell-division cycle, determining protein concentration, and analysis of gene expression per cell. In single-cell genomics studies, cell segmentations are vital to assess the genetic makeup of individual cells and their relative spatial location. Deep learning models are currently the most promising approaches among the various techniques and tools that have been developed to provide robust segmentation. We propose a learning ensemble strategy that aggregates many independent candidate segmentations of the same image to produce a single consensus segmentation as an alternative to developing another cell segmentation targeted model. We are particularly interested in learning how to ensemble crowdsourced image segmentations created by experts and non-experts in laboratories and data houses. Hence, these image segmentations are subject to high potential annotation errors created on purpose or by chance. We compare our trained ensemble model with other fusion methods adopted by the biomedical community, such as SIMPLE and STAPLE, and assess the robustness of the results on three aspects: fusion with outliers, missing data, and synthetic deformations. Our approach outperforms these methods in efficiency and quality, especially when there is a high disagreement among candidate segmentations of the same image.
id UFPE_6c7a4d710e1913b78ff7c479d3f2ff79
oai_identifier_str oai:repositorio.ufpe.br:123456789/47250
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling PENA, Carlos Henrique Caloetehttps://lattes.cnpq.br/3170539454572232http://lattes.cnpq.br/3084134533707587REN, Tsang Ing2022-10-26T13:19:14Z2022-10-26T13:19:14Z2022-08-25PENA, Carlos Henrique Caloete. An ensemble learning method for segmentation fusion. 2022. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/47250ark:/64986/0013000006r9pThe segmentation of cells present in microscope images is an essential step to automate many tasks, including cell counting, analysis of the cell-division cycle, determining protein concentration, and analysis of gene expression per cell. In single-cell genomics studies, cell segmentations are vital to assess the genetic makeup of individual cells and their relative spatial location. Deep learning models are currently the most promising approaches among the various techniques and tools that have been developed to provide robust segmentation. We propose a learning ensemble strategy that aggregates many independent candidate segmentations of the same image to produce a single consensus segmentation as an alternative to developing another cell segmentation targeted model. We are particularly interested in learning how to ensemble crowdsourced image segmentations created by experts and non-experts in laboratories and data houses. Hence, these image segmentations are subject to high potential annotation errors created on purpose or by chance. We compare our trained ensemble model with other fusion methods adopted by the biomedical community, such as SIMPLE and STAPLE, and assess the robustness of the results on three aspects: fusion with outliers, missing data, and synthetic deformations. Our approach outperforms these methods in efficiency and quality, especially when there is a high disagreement among candidate segmentations of the same image.A segmentação de células realizadas em imagens microscópicas é uma etapa essencial para automatizar multiplas tarefas, incluindo a contagem de células, a aferição da concentração de proteínas e a análise da expressão gênica das células. Em estudos de genômica, a segmentação das células é vital para avaliar a composição genética de células individualmente e a sua localização espacial relativa. Vários métodos e ferramentas foram desenvolvidos para oferecer uma segmentação robusta, sendo, atualmente, os modelos de deep learning as soluções mais promissoras. Como alternativa ao desenvolvimento de outro modelo direcionado a segmentação de imagens microscópicas, propomos, nesta dissertação, uma estratégia de aprendizado de fusão que agrega diversas segmentações candidatas independentes provindas de uma mesma imagem para produzir uma única segmentação de consenso. Estamos particularmente interessados em aprender como agrupar segmentações de imagens provindas de ferramentas crowdsourcing, podendo ser criadas por especialistas e não especialistas em laboratórios e data centers. Assim, comparamos nosso modelo de fusão com outros métodos adotados pela comunidade biomédica, tal como SIMPLE e STAPLE, e avaliamos a robustez dos resultados em três aspectos: fusão com outliers, segmentação parcial e deformações sintéticas. Nossa abordagem supera os métodos em eficiência e qualidade, especialmente, quando há uma grande discordância entre as segmentações candidatas da mesma imagem.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência computacionalSegmentação de imagensAprendizagem profundaAn ensemble learning method for segmentation fusioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALDISSERTAÇÃO Carlos Henrique Caloete Pena.pdfDISSERTAÇÃO Carlos Henrique Caloete Pena.pdfapplication/pdf4646425https://repositorio.ufpe.br/bitstream/123456789/47250/1/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Caloete%20Pena.pdf296a7c183141f9052b6d1f9765a1941cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/47250/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/47250/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTDISSERTAÇÃO Carlos Henrique Caloete Pena.pdf.txtDISSERTAÇÃO Carlos Henrique Caloete Pena.pdf.txtExtracted texttext/plain81720https://repositorio.ufpe.br/bitstream/123456789/47250/4/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Caloete%20Pena.pdf.txt6cc918a895301ecf91abb7df1c7b0343MD54THUMBNAILDISSERTAÇÃO Carlos Henrique Caloete Pena.pdf.jpgDISSERTAÇÃO Carlos Henrique Caloete Pena.pdf.jpgGenerated Thumbnailimage/jpeg1214https://repositorio.ufpe.br/bitstream/123456789/47250/5/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Caloete%20Pena.pdf.jpgff184eeea70c2bcd46065c9eb310edefMD55123456789/472502022-10-27 02:39:21.639oai:repositorio.ufpe.br:123456789/47250VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-10-27T05:39:21Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv An ensemble learning method for segmentation fusion
title An ensemble learning method for segmentation fusion
spellingShingle An ensemble learning method for segmentation fusion
PENA, Carlos Henrique Caloete
Inteligência computacional
Segmentação de imagens
Aprendizagem profunda
title_short An ensemble learning method for segmentation fusion
title_full An ensemble learning method for segmentation fusion
title_fullStr An ensemble learning method for segmentation fusion
title_full_unstemmed An ensemble learning method for segmentation fusion
title_sort An ensemble learning method for segmentation fusion
author PENA, Carlos Henrique Caloete
author_facet PENA, Carlos Henrique Caloete
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv https://lattes.cnpq.br/3170539454572232
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3084134533707587
dc.contributor.author.fl_str_mv PENA, Carlos Henrique Caloete
dc.contributor.advisor1.fl_str_mv REN, Tsang Ing
contributor_str_mv REN, Tsang Ing
dc.subject.por.fl_str_mv Inteligência computacional
Segmentação de imagens
Aprendizagem profunda
topic Inteligência computacional
Segmentação de imagens
Aprendizagem profunda
description The segmentation of cells present in microscope images is an essential step to automate many tasks, including cell counting, analysis of the cell-division cycle, determining protein concentration, and analysis of gene expression per cell. In single-cell genomics studies, cell segmentations are vital to assess the genetic makeup of individual cells and their relative spatial location. Deep learning models are currently the most promising approaches among the various techniques and tools that have been developed to provide robust segmentation. We propose a learning ensemble strategy that aggregates many independent candidate segmentations of the same image to produce a single consensus segmentation as an alternative to developing another cell segmentation targeted model. We are particularly interested in learning how to ensemble crowdsourced image segmentations created by experts and non-experts in laboratories and data houses. Hence, these image segmentations are subject to high potential annotation errors created on purpose or by chance. We compare our trained ensemble model with other fusion methods adopted by the biomedical community, such as SIMPLE and STAPLE, and assess the robustness of the results on three aspects: fusion with outliers, missing data, and synthetic deformations. Our approach outperforms these methods in efficiency and quality, especially when there is a high disagreement among candidate segmentations of the same image.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-10-26T13:19:14Z
dc.date.available.fl_str_mv 2022-10-26T13:19:14Z
dc.date.issued.fl_str_mv 2022-08-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PENA, Carlos Henrique Caloete. An ensemble learning method for segmentation fusion. 2022. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/47250
dc.identifier.dark.fl_str_mv ark:/64986/0013000006r9p
identifier_str_mv PENA, Carlos Henrique Caloete. An ensemble learning method for segmentation fusion. 2022. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.
ark:/64986/0013000006r9p
url https://repositorio.ufpe.br/handle/123456789/47250
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/47250/1/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Caloete%20Pena.pdf
https://repositorio.ufpe.br/bitstream/123456789/47250/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/47250/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/47250/4/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Caloete%20Pena.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/47250/5/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Caloete%20Pena.pdf.jpg
bitstream.checksum.fl_str_mv 296a7c183141f9052b6d1f9765a1941c
e39d27027a6cc9cb039ad269a5db8e34
5e89a1613ddc8510c6576f4b23a78973
6cc918a895301ecf91abb7df1c7b0343
ff184eeea70c2bcd46065c9eb310edef
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172742276710400