An ensemble learning method for segmentation fusion
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000006r9p |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/47250 |
Resumo: | The segmentation of cells present in microscope images is an essential step to automate many tasks, including cell counting, analysis of the cell-division cycle, determining protein concentration, and analysis of gene expression per cell. In single-cell genomics studies, cell segmentations are vital to assess the genetic makeup of individual cells and their relative spatial location. Deep learning models are currently the most promising approaches among the various techniques and tools that have been developed to provide robust segmentation. We propose a learning ensemble strategy that aggregates many independent candidate segmentations of the same image to produce a single consensus segmentation as an alternative to developing another cell segmentation targeted model. We are particularly interested in learning how to ensemble crowdsourced image segmentations created by experts and non-experts in laboratories and data houses. Hence, these image segmentations are subject to high potential annotation errors created on purpose or by chance. We compare our trained ensemble model with other fusion methods adopted by the biomedical community, such as SIMPLE and STAPLE, and assess the robustness of the results on three aspects: fusion with outliers, missing data, and synthetic deformations. Our approach outperforms these methods in efficiency and quality, especially when there is a high disagreement among candidate segmentations of the same image. |
id |
UFPE_6c7a4d710e1913b78ff7c479d3f2ff79 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/47250 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
PENA, Carlos Henrique Caloetehttps://lattes.cnpq.br/3170539454572232http://lattes.cnpq.br/3084134533707587REN, Tsang Ing2022-10-26T13:19:14Z2022-10-26T13:19:14Z2022-08-25PENA, Carlos Henrique Caloete. An ensemble learning method for segmentation fusion. 2022. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/47250ark:/64986/0013000006r9pThe segmentation of cells present in microscope images is an essential step to automate many tasks, including cell counting, analysis of the cell-division cycle, determining protein concentration, and analysis of gene expression per cell. In single-cell genomics studies, cell segmentations are vital to assess the genetic makeup of individual cells and their relative spatial location. Deep learning models are currently the most promising approaches among the various techniques and tools that have been developed to provide robust segmentation. We propose a learning ensemble strategy that aggregates many independent candidate segmentations of the same image to produce a single consensus segmentation as an alternative to developing another cell segmentation targeted model. We are particularly interested in learning how to ensemble crowdsourced image segmentations created by experts and non-experts in laboratories and data houses. Hence, these image segmentations are subject to high potential annotation errors created on purpose or by chance. We compare our trained ensemble model with other fusion methods adopted by the biomedical community, such as SIMPLE and STAPLE, and assess the robustness of the results on three aspects: fusion with outliers, missing data, and synthetic deformations. Our approach outperforms these methods in efficiency and quality, especially when there is a high disagreement among candidate segmentations of the same image.A segmentação de células realizadas em imagens microscópicas é uma etapa essencial para automatizar multiplas tarefas, incluindo a contagem de células, a aferição da concentração de proteínas e a análise da expressão gênica das células. Em estudos de genômica, a segmentação das células é vital para avaliar a composição genética de células individualmente e a sua localização espacial relativa. Vários métodos e ferramentas foram desenvolvidos para oferecer uma segmentação robusta, sendo, atualmente, os modelos de deep learning as soluções mais promissoras. Como alternativa ao desenvolvimento de outro modelo direcionado a segmentação de imagens microscópicas, propomos, nesta dissertação, uma estratégia de aprendizado de fusão que agrega diversas segmentações candidatas independentes provindas de uma mesma imagem para produzir uma única segmentação de consenso. Estamos particularmente interessados em aprender como agrupar segmentações de imagens provindas de ferramentas crowdsourcing, podendo ser criadas por especialistas e não especialistas em laboratórios e data centers. Assim, comparamos nosso modelo de fusão com outros métodos adotados pela comunidade biomédica, tal como SIMPLE e STAPLE, e avaliamos a robustez dos resultados em três aspectos: fusão com outliers, segmentação parcial e deformações sintéticas. Nossa abordagem supera os métodos em eficiência e qualidade, especialmente, quando há uma grande discordância entre as segmentações candidatas da mesma imagem.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência computacionalSegmentação de imagensAprendizagem profundaAn ensemble learning method for segmentation fusioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALDISSERTAÇÃO Carlos Henrique Caloete Pena.pdfDISSERTAÇÃO Carlos Henrique Caloete Pena.pdfapplication/pdf4646425https://repositorio.ufpe.br/bitstream/123456789/47250/1/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Caloete%20Pena.pdf296a7c183141f9052b6d1f9765a1941cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/47250/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/47250/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTDISSERTAÇÃO Carlos Henrique Caloete Pena.pdf.txtDISSERTAÇÃO Carlos Henrique Caloete Pena.pdf.txtExtracted texttext/plain81720https://repositorio.ufpe.br/bitstream/123456789/47250/4/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Caloete%20Pena.pdf.txt6cc918a895301ecf91abb7df1c7b0343MD54THUMBNAILDISSERTAÇÃO Carlos Henrique Caloete Pena.pdf.jpgDISSERTAÇÃO Carlos Henrique Caloete Pena.pdf.jpgGenerated Thumbnailimage/jpeg1214https://repositorio.ufpe.br/bitstream/123456789/47250/5/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Caloete%20Pena.pdf.jpgff184eeea70c2bcd46065c9eb310edefMD55123456789/472502022-10-27 02:39:21.639oai:repositorio.ufpe.br:123456789/47250VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-10-27T05:39:21Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
An ensemble learning method for segmentation fusion |
title |
An ensemble learning method for segmentation fusion |
spellingShingle |
An ensemble learning method for segmentation fusion PENA, Carlos Henrique Caloete Inteligência computacional Segmentação de imagens Aprendizagem profunda |
title_short |
An ensemble learning method for segmentation fusion |
title_full |
An ensemble learning method for segmentation fusion |
title_fullStr |
An ensemble learning method for segmentation fusion |
title_full_unstemmed |
An ensemble learning method for segmentation fusion |
title_sort |
An ensemble learning method for segmentation fusion |
author |
PENA, Carlos Henrique Caloete |
author_facet |
PENA, Carlos Henrique Caloete |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
https://lattes.cnpq.br/3170539454572232 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/3084134533707587 |
dc.contributor.author.fl_str_mv |
PENA, Carlos Henrique Caloete |
dc.contributor.advisor1.fl_str_mv |
REN, Tsang Ing |
contributor_str_mv |
REN, Tsang Ing |
dc.subject.por.fl_str_mv |
Inteligência computacional Segmentação de imagens Aprendizagem profunda |
topic |
Inteligência computacional Segmentação de imagens Aprendizagem profunda |
description |
The segmentation of cells present in microscope images is an essential step to automate many tasks, including cell counting, analysis of the cell-division cycle, determining protein concentration, and analysis of gene expression per cell. In single-cell genomics studies, cell segmentations are vital to assess the genetic makeup of individual cells and their relative spatial location. Deep learning models are currently the most promising approaches among the various techniques and tools that have been developed to provide robust segmentation. We propose a learning ensemble strategy that aggregates many independent candidate segmentations of the same image to produce a single consensus segmentation as an alternative to developing another cell segmentation targeted model. We are particularly interested in learning how to ensemble crowdsourced image segmentations created by experts and non-experts in laboratories and data houses. Hence, these image segmentations are subject to high potential annotation errors created on purpose or by chance. We compare our trained ensemble model with other fusion methods adopted by the biomedical community, such as SIMPLE and STAPLE, and assess the robustness of the results on three aspects: fusion with outliers, missing data, and synthetic deformations. Our approach outperforms these methods in efficiency and quality, especially when there is a high disagreement among candidate segmentations of the same image. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-10-26T13:19:14Z |
dc.date.available.fl_str_mv |
2022-10-26T13:19:14Z |
dc.date.issued.fl_str_mv |
2022-08-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PENA, Carlos Henrique Caloete. An ensemble learning method for segmentation fusion. 2022. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/47250 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000006r9p |
identifier_str_mv |
PENA, Carlos Henrique Caloete. An ensemble learning method for segmentation fusion. 2022. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022. ark:/64986/0013000006r9p |
url |
https://repositorio.ufpe.br/handle/123456789/47250 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/47250/1/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Caloete%20Pena.pdf https://repositorio.ufpe.br/bitstream/123456789/47250/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/47250/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/47250/4/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Caloete%20Pena.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/47250/5/DISSERTA%c3%87%c3%83O%20Carlos%20Henrique%20Caloete%20Pena.pdf.jpg |
bitstream.checksum.fl_str_mv |
296a7c183141f9052b6d1f9765a1941c e39d27027a6cc9cb039ad269a5db8e34 5e89a1613ddc8510c6576f4b23a78973 6cc918a895301ecf91abb7df1c7b0343 ff184eeea70c2bcd46065c9eb310edef |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172742276710400 |