AStar : a modeling language for document-oriented geospatial data warehouses
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000hd85 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/45964 |
Resumo: | A Geospatial Data Warehouse (GDW) is an extension of a traditional Data Warehouse that includes geospatial data in the decision-making processes. Several studies have proposed the use of document-oriented databases in a GDW as an alternative to relational databases. This is due to the ability of non-relational databases to scale horizontally, allowing for the storage and processing of large volumes of data. In this context, modeling the manner in which facts and dimensions are structured is important in order to understand, maintain, and evolve the Document-oriented GDW (DGDW) through visual analysis. However, to the best of our knowledge, there are no modeling languages that support the design of facts and dimensions as referenced or embedded documents, partitioned into one or more collections. To overcome this lack, we propose Aggregate Star (AStar), a Domain-Specific Modeling Language for designing DGDW logical schemas. AStar is defined from a concrete syntax (graphical notation), an abstract syntax (metamodel), and static semantics (well-formedness rules). In order to describe the semantics of the concepts defined in AStar, translational semantics map the graphical notation to the metamodel and the respective code, to define the schema in MongoDB (using JSON Schema). We evaluate the graphical notation using Physics of Notations (PoN), which provides a set of principles for designing cognitively effective visual notations. This evaluation revealed that AStar is in accordance with eight of the nine PoN Principles, an adequate level of cognitive effectiveness. As a proof of concept, the metamodel and well-formedness rules were implemented in a prototype of Computer-Assisted Software Engineering tool, called AStarCASE. In its current version, AStarCASE can be used to design DGDW logical schemas and to generate their corresponding code in the form of JSON Schemas. Furthermore, we present a guideline that shows how to design schemas that have facts, conventional dimensions, and geospatial dimensions related as referenced or embedded documents, and partitioned into one or more collections. The guidelines also present good practices to achieve low data volume and low query runtime in a DGDW. |
id |
UFPE_6d511ee19030393bd3c170e7c372984f |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/45964 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
FERRO, Márcio Robério da Costahttp://lattes.cnpq.br/2480382178623363http://lattes.cnpq.br/6390018491925933FIDALGO, Robson do Nascimento2022-08-25T13:30:06Z2022-08-25T13:30:06Z2022-02-18FERRO, Márcio Robério da Costa. AStar: a modeling language for document-oriented geospatial data warehouses. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/45964ark:/64986/001300000hd85A Geospatial Data Warehouse (GDW) is an extension of a traditional Data Warehouse that includes geospatial data in the decision-making processes. Several studies have proposed the use of document-oriented databases in a GDW as an alternative to relational databases. This is due to the ability of non-relational databases to scale horizontally, allowing for the storage and processing of large volumes of data. In this context, modeling the manner in which facts and dimensions are structured is important in order to understand, maintain, and evolve the Document-oriented GDW (DGDW) through visual analysis. However, to the best of our knowledge, there are no modeling languages that support the design of facts and dimensions as referenced or embedded documents, partitioned into one or more collections. To overcome this lack, we propose Aggregate Star (AStar), a Domain-Specific Modeling Language for designing DGDW logical schemas. AStar is defined from a concrete syntax (graphical notation), an abstract syntax (metamodel), and static semantics (well-formedness rules). In order to describe the semantics of the concepts defined in AStar, translational semantics map the graphical notation to the metamodel and the respective code, to define the schema in MongoDB (using JSON Schema). We evaluate the graphical notation using Physics of Notations (PoN), which provides a set of principles for designing cognitively effective visual notations. This evaluation revealed that AStar is in accordance with eight of the nine PoN Principles, an adequate level of cognitive effectiveness. As a proof of concept, the metamodel and well-formedness rules were implemented in a prototype of Computer-Assisted Software Engineering tool, called AStarCASE. In its current version, AStarCASE can be used to design DGDW logical schemas and to generate their corresponding code in the form of JSON Schemas. Furthermore, we present a guideline that shows how to design schemas that have facts, conventional dimensions, and geospatial dimensions related as referenced or embedded documents, and partitioned into one or more collections. The guidelines also present good practices to achieve low data volume and low query runtime in a DGDW.Um Data Warehouse Geoespacial (DWG) é uma extensão de um Data Warehouse tradicional que inclui dados geoespaciais nos processos de tomada de decisão. Diversos estudos propõem o uso de bancos de dados orientados a documentos em um DWG como alternativa aos bancos de dados relacionais. Isso se deve à capacidade dos bancos de dados não relacionais de escalar horizontalmente, permitindo o armazenamento e o processamento de grandes volumes de dados. Nesse contexto, modelar por meio da análise visual a maneira como fatos e dimensões estão estruturados é importante para entender, manter e evoluir o DWG Orientado a Documentos (DWGD). No entanto, até onde sabemos, não há linguagens de modelagem que deem suporte ao design de fatos e dimensões como documentos referenciados ou embutidos, particionados em uma ou mais coleções. Para superar essa lacuna, propomos Aggregate Star (AStar), uma linguagem de modelagem específica de domínio para projetar esquemas lógicos de DWGD. AStar é definida por uma sintaxe concreta (notação gráfica), uma sintaxe abstrata (metamodelo) e semântica estática (regras de boa formação). Para descrever a semântica dos conceitos definidos em AStar, semântica translacional é usada para mapear a notação gráfica para o metamodelo e o respectivo código que define o esquema no MongoDB (usando JSON Schema). Avaliamos a notação gráfica usando Physics of Notations (PoN), que fornece um conjunto de princípios para projetar notações visuais cognitivamente eficazes. Essa avaliação revelou que AStar está de acordo com oito dos nove Princípios PoN, um nível adequado de eficácia cognitiva. Como prova de conceito, o metamodelo e as regras de boa formação foram implementados em um protótipo de ferramenta de Engenharia de Software Assistida por Computador, denominado AStarCASE. Nesta versão atual, AStarCASE pode ser usada para projetar esquemas lógicos de DWGD e gerar seu código correspondente na forma de esquemas JSON. Além disso, apresentamos uma guia que mostra como projetar esquemas que possuem fatos, dimensões convencionais e dimensões geoespaciais relacionadas como documentos referenciados ou incorporados, particionados em uma ou mais coleções. O guia também apresenta boas práticas para obter baixo volume de dados e baixo tempo de execução de consulta em um DWGD.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessBanco de dadosData warehouse geoespacialBancos de dados orientados a documentosEsquema lógicoDSMLAStar : a modeling language for document-oriented geospatial data warehousesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPECC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/45964/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52ORIGINALTESE Márcio Robério da Costa Ferro.pdfTESE Márcio Robério da Costa Ferro.pdfapplication/pdf10557432https://repositorio.ufpe.br/bitstream/123456789/45964/1/TESE%20M%c3%a1rcio%20Rob%c3%a9rio%20da%20Costa%20Ferro.pdf292c77d85bb3f27bb8fd5740d5d75e2cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82142https://repositorio.ufpe.br/bitstream/123456789/45964/3/license.txt6928b9260b07fb2755249a5ca9903395MD53TEXTTESE Márcio Robério da Costa Ferro.pdf.txtTESE Márcio Robério da Costa Ferro.pdf.txtExtracted texttext/plain228286https://repositorio.ufpe.br/bitstream/123456789/45964/4/TESE%20M%c3%a1rcio%20Rob%c3%a9rio%20da%20Costa%20Ferro.pdf.txt3a35b61d0e61caad72139238eae04bc4MD54THUMBNAILTESE Márcio Robério da Costa Ferro.pdf.jpgTESE Márcio Robério da Costa Ferro.pdf.jpgGenerated Thumbnailimage/jpeg1210https://repositorio.ufpe.br/bitstream/123456789/45964/5/TESE%20M%c3%a1rcio%20Rob%c3%a9rio%20da%20Costa%20Ferro.pdf.jpg8d0dfbaa4bccc0f5f66525e6a065cf2fMD55123456789/459642022-08-26 02:20:44.441oai:repositorio.ufpe.br:123456789/45964VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBkZSBEb2N1bWVudG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUKIAoKRGVjbGFybyBlc3RhciBjaWVudGUgZGUgcXVlIGVzdGUgVGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyB0ZW0gbyBvYmpldGl2byBkZSBkaXZ1bGdhw6fDo28gZG9zIGRvY3VtZW50b3MgZGVwb3NpdGFkb3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBlIGRlY2xhcm8gcXVlOgoKSSAtICBvIGNvbnRlw7pkbyBkaXNwb25pYmlsaXphZG8gw6kgZGUgcmVzcG9uc2FiaWxpZGFkZSBkZSBzdWEgYXV0b3JpYTsKCklJIC0gbyBjb250ZcO6ZG8gw6kgb3JpZ2luYWwsIGUgc2UgbyB0cmFiYWxobyBlL291IHBhbGF2cmFzIGRlIG91dHJhcyBwZXNzb2FzIGZvcmFtIHV0aWxpemFkb3MsIGVzdGFzIGZvcmFtIGRldmlkYW1lbnRlIHJlY29uaGVjaWRhczsKCklJSSAtIHF1YW5kbyB0cmF0YXItc2UgZGUgVHJhYmFsaG8gZGUgQ29uY2x1c8OjbyBkZSBDdXJzbywgRGlzc2VydGHDp8OjbyBvdSBUZXNlOiBvIGFycXVpdm8gZGVwb3NpdGFkbyBjb3JyZXNwb25kZSDDoCB2ZXJzw6NvIGZpbmFsIGRvIHRyYWJhbGhvOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogZXN0b3UgY2llbnRlIGRlIHF1ZSBhIGFsdGVyYcOnw6NvIGRhIG1vZGFsaWRhZGUgZGUgYWNlc3NvIGFvIGRvY3VtZW50byBhcMOzcyBvIGRlcMOzc2l0byBlIGFudGVzIGRlIGZpbmRhciBvIHBlcsOtb2RvIGRlIGVtYmFyZ28sIHF1YW5kbyBmb3IgZXNjb2xoaWRvIGFjZXNzbyByZXN0cml0bywgc2Vyw6EgcGVybWl0aWRhIG1lZGlhbnRlIHNvbGljaXRhw6fDo28gZG8gKGEpIGF1dG9yIChhKSBhbyBTaXN0ZW1hIEludGVncmFkbyBkZSBCaWJsaW90ZWNhcyBkYSBVRlBFIChTSUIvVUZQRSkuCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBBYmVydG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBhcnQuIDI5LCBpbmNpc28gSUlJLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFBlcm5hbWJ1Y28gYSBkaXNwb25pYmlsaXphciBncmF0dWl0YW1lbnRlLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHBhcmEgZmlucyBkZSBsZWl0dXJhLCBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQgKGFxdWlzacOnw6NvKSBhdHJhdsOpcyBkbyBzaXRlIGRvIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgbm8gZW5kZXJlw6dvIGh0dHA6Ly93d3cucmVwb3NpdG9yaW8udWZwZS5iciwgYSBwYXJ0aXIgZGEgZGF0YSBkZSBkZXDDs3NpdG8uCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBSZXN0cml0bzoKCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBhdXRvciBxdWUgcmVjYWVtIHNvYnJlIGVzdGUgZG9jdW1lbnRvLCBmdW5kYW1lbnRhZG8gbmEgTGVpIGRlIERpcmVpdG8gQXV0b3JhbCBubyA5LjYxMCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIHF1YW5kbyBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvIGNvbmRpemVudGUgYW8gdGlwbyBkZSBkb2N1bWVudG8sIGNvbmZvcm1lIGluZGljYWRvIG5vIGNhbXBvIERhdGEgZGUgRW1iYXJnby4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-08-26T05:20:44Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
AStar : a modeling language for document-oriented geospatial data warehouses |
title |
AStar : a modeling language for document-oriented geospatial data warehouses |
spellingShingle |
AStar : a modeling language for document-oriented geospatial data warehouses FERRO, Márcio Robério da Costa Banco de dados Data warehouse geoespacial Bancos de dados orientados a documentos Esquema lógico DSML |
title_short |
AStar : a modeling language for document-oriented geospatial data warehouses |
title_full |
AStar : a modeling language for document-oriented geospatial data warehouses |
title_fullStr |
AStar : a modeling language for document-oriented geospatial data warehouses |
title_full_unstemmed |
AStar : a modeling language for document-oriented geospatial data warehouses |
title_sort |
AStar : a modeling language for document-oriented geospatial data warehouses |
author |
FERRO, Márcio Robério da Costa |
author_facet |
FERRO, Márcio Robério da Costa |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/2480382178623363 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6390018491925933 |
dc.contributor.author.fl_str_mv |
FERRO, Márcio Robério da Costa |
dc.contributor.advisor1.fl_str_mv |
FIDALGO, Robson do Nascimento |
contributor_str_mv |
FIDALGO, Robson do Nascimento |
dc.subject.por.fl_str_mv |
Banco de dados Data warehouse geoespacial Bancos de dados orientados a documentos Esquema lógico DSML |
topic |
Banco de dados Data warehouse geoespacial Bancos de dados orientados a documentos Esquema lógico DSML |
description |
A Geospatial Data Warehouse (GDW) is an extension of a traditional Data Warehouse that includes geospatial data in the decision-making processes. Several studies have proposed the use of document-oriented databases in a GDW as an alternative to relational databases. This is due to the ability of non-relational databases to scale horizontally, allowing for the storage and processing of large volumes of data. In this context, modeling the manner in which facts and dimensions are structured is important in order to understand, maintain, and evolve the Document-oriented GDW (DGDW) through visual analysis. However, to the best of our knowledge, there are no modeling languages that support the design of facts and dimensions as referenced or embedded documents, partitioned into one or more collections. To overcome this lack, we propose Aggregate Star (AStar), a Domain-Specific Modeling Language for designing DGDW logical schemas. AStar is defined from a concrete syntax (graphical notation), an abstract syntax (metamodel), and static semantics (well-formedness rules). In order to describe the semantics of the concepts defined in AStar, translational semantics map the graphical notation to the metamodel and the respective code, to define the schema in MongoDB (using JSON Schema). We evaluate the graphical notation using Physics of Notations (PoN), which provides a set of principles for designing cognitively effective visual notations. This evaluation revealed that AStar is in accordance with eight of the nine PoN Principles, an adequate level of cognitive effectiveness. As a proof of concept, the metamodel and well-formedness rules were implemented in a prototype of Computer-Assisted Software Engineering tool, called AStarCASE. In its current version, AStarCASE can be used to design DGDW logical schemas and to generate their corresponding code in the form of JSON Schemas. Furthermore, we present a guideline that shows how to design schemas that have facts, conventional dimensions, and geospatial dimensions related as referenced or embedded documents, and partitioned into one or more collections. The guidelines also present good practices to achieve low data volume and low query runtime in a DGDW. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-08-25T13:30:06Z |
dc.date.available.fl_str_mv |
2022-08-25T13:30:06Z |
dc.date.issued.fl_str_mv |
2022-02-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
FERRO, Márcio Robério da Costa. AStar: a modeling language for document-oriented geospatial data warehouses. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/45964 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000hd85 |
identifier_str_mv |
FERRO, Márcio Robério da Costa. AStar: a modeling language for document-oriented geospatial data warehouses. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022. ark:/64986/001300000hd85 |
url |
https://repositorio.ufpe.br/handle/123456789/45964 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/45964/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/45964/1/TESE%20M%c3%a1rcio%20Rob%c3%a9rio%20da%20Costa%20Ferro.pdf https://repositorio.ufpe.br/bitstream/123456789/45964/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/45964/4/TESE%20M%c3%a1rcio%20Rob%c3%a9rio%20da%20Costa%20Ferro.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/45964/5/TESE%20M%c3%a1rcio%20Rob%c3%a9rio%20da%20Costa%20Ferro.pdf.jpg |
bitstream.checksum.fl_str_mv |
e39d27027a6cc9cb039ad269a5db8e34 292c77d85bb3f27bb8fd5740d5d75e2c 6928b9260b07fb2755249a5ca9903395 3a35b61d0e61caad72139238eae04bc4 8d0dfbaa4bccc0f5f66525e6a065cf2f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172827466170368 |