AStar : a modeling language for document-oriented geospatial data warehouses

Detalhes bibliográficos
Autor(a) principal: FERRO, Márcio Robério da Costa
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000hd85
Texto Completo: https://repositorio.ufpe.br/handle/123456789/45964
Resumo: A Geospatial Data Warehouse (GDW) is an extension of a traditional Data Warehouse that includes geospatial data in the decision-making processes. Several studies have proposed the use of document-oriented databases in a GDW as an alternative to relational databases. This is due to the ability of non-relational databases to scale horizontally, allowing for the storage and processing of large volumes of data. In this context, modeling the manner in which facts and dimensions are structured is important in order to understand, maintain, and evolve the Document-oriented GDW (DGDW) through visual analysis. However, to the best of our knowledge, there are no modeling languages that support the design of facts and dimensions as referenced or embedded documents, partitioned into one or more collections. To overcome this lack, we propose Aggregate Star (AStar), a Domain-Specific Modeling Language for designing DGDW logical schemas. AStar is defined from a concrete syntax (graphical notation), an abstract syntax (metamodel), and static semantics (well-formedness rules). In order to describe the semantics of the concepts defined in AStar, translational semantics map the graphical notation to the metamodel and the respective code, to define the schema in MongoDB (using JSON Schema). We evaluate the graphical notation using Physics of Notations (PoN), which provides a set of principles for designing cognitively effective visual notations. This evaluation revealed that AStar is in accordance with eight of the nine PoN Principles, an adequate level of cognitive effectiveness. As a proof of concept, the metamodel and well-formedness rules were implemented in a prototype of Computer-Assisted Software Engineering tool, called AStarCASE. In its current version, AStarCASE can be used to design DGDW logical schemas and to generate their corresponding code in the form of JSON Schemas. Furthermore, we present a guideline that shows how to design schemas that have facts, conventional dimensions, and geospatial dimensions related as referenced or embedded documents, and partitioned into one or more collections. The guidelines also present good practices to achieve low data volume and low query runtime in a DGDW.
id UFPE_6d511ee19030393bd3c170e7c372984f
oai_identifier_str oai:repositorio.ufpe.br:123456789/45964
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling FERRO, Márcio Robério da Costahttp://lattes.cnpq.br/2480382178623363http://lattes.cnpq.br/6390018491925933FIDALGO, Robson do Nascimento2022-08-25T13:30:06Z2022-08-25T13:30:06Z2022-02-18FERRO, Márcio Robério da Costa. AStar: a modeling language for document-oriented geospatial data warehouses. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/45964ark:/64986/001300000hd85A Geospatial Data Warehouse (GDW) is an extension of a traditional Data Warehouse that includes geospatial data in the decision-making processes. Several studies have proposed the use of document-oriented databases in a GDW as an alternative to relational databases. This is due to the ability of non-relational databases to scale horizontally, allowing for the storage and processing of large volumes of data. In this context, modeling the manner in which facts and dimensions are structured is important in order to understand, maintain, and evolve the Document-oriented GDW (DGDW) through visual analysis. However, to the best of our knowledge, there are no modeling languages that support the design of facts and dimensions as referenced or embedded documents, partitioned into one or more collections. To overcome this lack, we propose Aggregate Star (AStar), a Domain-Specific Modeling Language for designing DGDW logical schemas. AStar is defined from a concrete syntax (graphical notation), an abstract syntax (metamodel), and static semantics (well-formedness rules). In order to describe the semantics of the concepts defined in AStar, translational semantics map the graphical notation to the metamodel and the respective code, to define the schema in MongoDB (using JSON Schema). We evaluate the graphical notation using Physics of Notations (PoN), which provides a set of principles for designing cognitively effective visual notations. This evaluation revealed that AStar is in accordance with eight of the nine PoN Principles, an adequate level of cognitive effectiveness. As a proof of concept, the metamodel and well-formedness rules were implemented in a prototype of Computer-Assisted Software Engineering tool, called AStarCASE. In its current version, AStarCASE can be used to design DGDW logical schemas and to generate their corresponding code in the form of JSON Schemas. Furthermore, we present a guideline that shows how to design schemas that have facts, conventional dimensions, and geospatial dimensions related as referenced or embedded documents, and partitioned into one or more collections. The guidelines also present good practices to achieve low data volume and low query runtime in a DGDW.Um Data Warehouse Geoespacial (DWG) é uma extensão de um Data Warehouse tradicional que inclui dados geoespaciais nos processos de tomada de decisão. Diversos estudos propõem o uso de bancos de dados orientados a documentos em um DWG como alternativa aos bancos de dados relacionais. Isso se deve à capacidade dos bancos de dados não relacionais de escalar horizontalmente, permitindo o armazenamento e o processamento de grandes volumes de dados. Nesse contexto, modelar por meio da análise visual a maneira como fatos e dimensões estão estruturados é importante para entender, manter e evoluir o DWG Orientado a Documentos (DWGD). No entanto, até onde sabemos, não há linguagens de modelagem que deem suporte ao design de fatos e dimensões como documentos referenciados ou embutidos, particionados em uma ou mais coleções. Para superar essa lacuna, propomos Aggregate Star (AStar), uma linguagem de modelagem específica de domínio para projetar esquemas lógicos de DWGD. AStar é definida por uma sintaxe concreta (notação gráfica), uma sintaxe abstrata (metamodelo) e semântica estática (regras de boa formação). Para descrever a semântica dos conceitos definidos em AStar, semântica translacional é usada para mapear a notação gráfica para o metamodelo e o respectivo código que define o esquema no MongoDB (usando JSON Schema). Avaliamos a notação gráfica usando Physics of Notations (PoN), que fornece um conjunto de princípios para projetar notações visuais cognitivamente eficazes. Essa avaliação revelou que AStar está de acordo com oito dos nove Princípios PoN, um nível adequado de eficácia cognitiva. Como prova de conceito, o metamodelo e as regras de boa formação foram implementados em um protótipo de ferramenta de Engenharia de Software Assistida por Computador, denominado AStarCASE. Nesta versão atual, AStarCASE pode ser usada para projetar esquemas lógicos de DWGD e gerar seu código correspondente na forma de esquemas JSON. Além disso, apresentamos uma guia que mostra como projetar esquemas que possuem fatos, dimensões convencionais e dimensões geoespaciais relacionadas como documentos referenciados ou incorporados, particionados em uma ou mais coleções. O guia também apresenta boas práticas para obter baixo volume de dados e baixo tempo de execução de consulta em um DWGD.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessBanco de dadosData warehouse geoespacialBancos de dados orientados a documentosEsquema lógicoDSMLAStar : a modeling language for document-oriented geospatial data warehousesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPECC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/45964/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52ORIGINALTESE Márcio Robério da Costa Ferro.pdfTESE Márcio Robério da Costa Ferro.pdfapplication/pdf10557432https://repositorio.ufpe.br/bitstream/123456789/45964/1/TESE%20M%c3%a1rcio%20Rob%c3%a9rio%20da%20Costa%20Ferro.pdf292c77d85bb3f27bb8fd5740d5d75e2cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82142https://repositorio.ufpe.br/bitstream/123456789/45964/3/license.txt6928b9260b07fb2755249a5ca9903395MD53TEXTTESE Márcio Robério da Costa Ferro.pdf.txtTESE Márcio Robério da Costa Ferro.pdf.txtExtracted texttext/plain228286https://repositorio.ufpe.br/bitstream/123456789/45964/4/TESE%20M%c3%a1rcio%20Rob%c3%a9rio%20da%20Costa%20Ferro.pdf.txt3a35b61d0e61caad72139238eae04bc4MD54THUMBNAILTESE Márcio Robério da Costa Ferro.pdf.jpgTESE Márcio Robério da Costa Ferro.pdf.jpgGenerated Thumbnailimage/jpeg1210https://repositorio.ufpe.br/bitstream/123456789/45964/5/TESE%20M%c3%a1rcio%20Rob%c3%a9rio%20da%20Costa%20Ferro.pdf.jpg8d0dfbaa4bccc0f5f66525e6a065cf2fMD55123456789/459642022-08-26 02:20:44.441oai:repositorio.ufpe.br:123456789/45964VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBkZSBEb2N1bWVudG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUKIAoKRGVjbGFybyBlc3RhciBjaWVudGUgZGUgcXVlIGVzdGUgVGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyB0ZW0gbyBvYmpldGl2byBkZSBkaXZ1bGdhw6fDo28gZG9zIGRvY3VtZW50b3MgZGVwb3NpdGFkb3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBlIGRlY2xhcm8gcXVlOgoKSSAtICBvIGNvbnRlw7pkbyBkaXNwb25pYmlsaXphZG8gw6kgZGUgcmVzcG9uc2FiaWxpZGFkZSBkZSBzdWEgYXV0b3JpYTsKCklJIC0gbyBjb250ZcO6ZG8gw6kgb3JpZ2luYWwsIGUgc2UgbyB0cmFiYWxobyBlL291IHBhbGF2cmFzIGRlIG91dHJhcyBwZXNzb2FzIGZvcmFtIHV0aWxpemFkb3MsIGVzdGFzIGZvcmFtIGRldmlkYW1lbnRlIHJlY29uaGVjaWRhczsKCklJSSAtIHF1YW5kbyB0cmF0YXItc2UgZGUgVHJhYmFsaG8gZGUgQ29uY2x1c8OjbyBkZSBDdXJzbywgRGlzc2VydGHDp8OjbyBvdSBUZXNlOiBvIGFycXVpdm8gZGVwb3NpdGFkbyBjb3JyZXNwb25kZSDDoCB2ZXJzw6NvIGZpbmFsIGRvIHRyYWJhbGhvOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogZXN0b3UgY2llbnRlIGRlIHF1ZSBhIGFsdGVyYcOnw6NvIGRhIG1vZGFsaWRhZGUgZGUgYWNlc3NvIGFvIGRvY3VtZW50byBhcMOzcyBvIGRlcMOzc2l0byBlIGFudGVzIGRlIGZpbmRhciBvIHBlcsOtb2RvIGRlIGVtYmFyZ28sIHF1YW5kbyBmb3IgZXNjb2xoaWRvIGFjZXNzbyByZXN0cml0bywgc2Vyw6EgcGVybWl0aWRhIG1lZGlhbnRlIHNvbGljaXRhw6fDo28gZG8gKGEpIGF1dG9yIChhKSBhbyBTaXN0ZW1hIEludGVncmFkbyBkZSBCaWJsaW90ZWNhcyBkYSBVRlBFIChTSUIvVUZQRSkuCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBBYmVydG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBhcnQuIDI5LCBpbmNpc28gSUlJLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFBlcm5hbWJ1Y28gYSBkaXNwb25pYmlsaXphciBncmF0dWl0YW1lbnRlLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHBhcmEgZmlucyBkZSBsZWl0dXJhLCBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQgKGFxdWlzacOnw6NvKSBhdHJhdsOpcyBkbyBzaXRlIGRvIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgbm8gZW5kZXJlw6dvIGh0dHA6Ly93d3cucmVwb3NpdG9yaW8udWZwZS5iciwgYSBwYXJ0aXIgZGEgZGF0YSBkZSBkZXDDs3NpdG8uCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBSZXN0cml0bzoKCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBhdXRvciBxdWUgcmVjYWVtIHNvYnJlIGVzdGUgZG9jdW1lbnRvLCBmdW5kYW1lbnRhZG8gbmEgTGVpIGRlIERpcmVpdG8gQXV0b3JhbCBubyA5LjYxMCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIHF1YW5kbyBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvIGNvbmRpemVudGUgYW8gdGlwbyBkZSBkb2N1bWVudG8sIGNvbmZvcm1lIGluZGljYWRvIG5vIGNhbXBvIERhdGEgZGUgRW1iYXJnby4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-08-26T05:20:44Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv AStar : a modeling language for document-oriented geospatial data warehouses
title AStar : a modeling language for document-oriented geospatial data warehouses
spellingShingle AStar : a modeling language for document-oriented geospatial data warehouses
FERRO, Márcio Robério da Costa
Banco de dados
Data warehouse geoespacial
Bancos de dados orientados a documentos
Esquema lógico
DSML
title_short AStar : a modeling language for document-oriented geospatial data warehouses
title_full AStar : a modeling language for document-oriented geospatial data warehouses
title_fullStr AStar : a modeling language for document-oriented geospatial data warehouses
title_full_unstemmed AStar : a modeling language for document-oriented geospatial data warehouses
title_sort AStar : a modeling language for document-oriented geospatial data warehouses
author FERRO, Márcio Robério da Costa
author_facet FERRO, Márcio Robério da Costa
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2480382178623363
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6390018491925933
dc.contributor.author.fl_str_mv FERRO, Márcio Robério da Costa
dc.contributor.advisor1.fl_str_mv FIDALGO, Robson do Nascimento
contributor_str_mv FIDALGO, Robson do Nascimento
dc.subject.por.fl_str_mv Banco de dados
Data warehouse geoespacial
Bancos de dados orientados a documentos
Esquema lógico
DSML
topic Banco de dados
Data warehouse geoespacial
Bancos de dados orientados a documentos
Esquema lógico
DSML
description A Geospatial Data Warehouse (GDW) is an extension of a traditional Data Warehouse that includes geospatial data in the decision-making processes. Several studies have proposed the use of document-oriented databases in a GDW as an alternative to relational databases. This is due to the ability of non-relational databases to scale horizontally, allowing for the storage and processing of large volumes of data. In this context, modeling the manner in which facts and dimensions are structured is important in order to understand, maintain, and evolve the Document-oriented GDW (DGDW) through visual analysis. However, to the best of our knowledge, there are no modeling languages that support the design of facts and dimensions as referenced or embedded documents, partitioned into one or more collections. To overcome this lack, we propose Aggregate Star (AStar), a Domain-Specific Modeling Language for designing DGDW logical schemas. AStar is defined from a concrete syntax (graphical notation), an abstract syntax (metamodel), and static semantics (well-formedness rules). In order to describe the semantics of the concepts defined in AStar, translational semantics map the graphical notation to the metamodel and the respective code, to define the schema in MongoDB (using JSON Schema). We evaluate the graphical notation using Physics of Notations (PoN), which provides a set of principles for designing cognitively effective visual notations. This evaluation revealed that AStar is in accordance with eight of the nine PoN Principles, an adequate level of cognitive effectiveness. As a proof of concept, the metamodel and well-formedness rules were implemented in a prototype of Computer-Assisted Software Engineering tool, called AStarCASE. In its current version, AStarCASE can be used to design DGDW logical schemas and to generate their corresponding code in the form of JSON Schemas. Furthermore, we present a guideline that shows how to design schemas that have facts, conventional dimensions, and geospatial dimensions related as referenced or embedded documents, and partitioned into one or more collections. The guidelines also present good practices to achieve low data volume and low query runtime in a DGDW.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-08-25T13:30:06Z
dc.date.available.fl_str_mv 2022-08-25T13:30:06Z
dc.date.issued.fl_str_mv 2022-02-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FERRO, Márcio Robério da Costa. AStar: a modeling language for document-oriented geospatial data warehouses. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/45964
dc.identifier.dark.fl_str_mv ark:/64986/001300000hd85
identifier_str_mv FERRO, Márcio Robério da Costa. AStar: a modeling language for document-oriented geospatial data warehouses. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.
ark:/64986/001300000hd85
url https://repositorio.ufpe.br/handle/123456789/45964
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/45964/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/45964/1/TESE%20M%c3%a1rcio%20Rob%c3%a9rio%20da%20Costa%20Ferro.pdf
https://repositorio.ufpe.br/bitstream/123456789/45964/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/45964/4/TESE%20M%c3%a1rcio%20Rob%c3%a9rio%20da%20Costa%20Ferro.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/45964/5/TESE%20M%c3%a1rcio%20Rob%c3%a9rio%20da%20Costa%20Ferro.pdf.jpg
bitstream.checksum.fl_str_mv e39d27027a6cc9cb039ad269a5db8e34
292c77d85bb3f27bb8fd5740d5d75e2c
6928b9260b07fb2755249a5ca9903395
3a35b61d0e61caad72139238eae04bc4
8d0dfbaa4bccc0f5f66525e6a065cf2f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172827466170368