L² decay for weak solutions of the micropolar equations on R³
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/31009 |
Resumo: | We obtain decay estimates for solutions of the micropolar fluid equations . Such equations, proposed by A. C. Eringen, generalize the classic model of Navier-Stokes and describe the behavior of fluids with microstructure such as animal blood, liquid crystals, suspensions, among others. For this, we use a method developed by M. Schonbek, known by Fourier Splitting Method. In order to present the method, we first show how it was applied in the context of parabolic conservation laws and the Navier-Stokes equations to obtain decay estimates. Having done this, assuming the existence for solutions of the micropolar fluid system with Dirichlet conditions at infinity and we show the result when the external forces are either null or decay at an appropriate rate. Lastly, through retarded mollifiers and approximate solutions, we guarantee the existence of solutions for the micropolar fluidequations in convenient functional spaces and we prove the desired decay bound. |
id |
UFPE_6e7c2f66f8253542601516b94d936f5d |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/31009 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
FREITAS, Lorena Brizza Soareshttp://lattes.cnpq.br/2302580820419163http://lattes.cnpq.br/3205167619554233BRAZ E SILVA, Pablo Gustavo AlbuquerqueCRUZ, Felipe Wergete2019-06-10T23:16:38Z2019-06-10T23:16:38Z2018-06-14https://repositorio.ufpe.br/handle/123456789/31009We obtain decay estimates for solutions of the micropolar fluid equations . Such equations, proposed by A. C. Eringen, generalize the classic model of Navier-Stokes and describe the behavior of fluids with microstructure such as animal blood, liquid crystals, suspensions, among others. For this, we use a method developed by M. Schonbek, known by Fourier Splitting Method. In order to present the method, we first show how it was applied in the context of parabolic conservation laws and the Navier-Stokes equations to obtain decay estimates. Having done this, assuming the existence for solutions of the micropolar fluid system with Dirichlet conditions at infinity and we show the result when the external forces are either null or decay at an appropriate rate. Lastly, through retarded mollifiers and approximate solutions, we guarantee the existence of solutions for the micropolar fluidequations in convenient functional spaces and we prove the desired decay bound.CAPESObtemos estimativas de decaimento para as soluções das equações para fluidos micropolares. Tais equações, propostas por A. C. Eringen, generalizam o clássico modelo de Navier-Stokes e descrevem o comportamento de fluidos com microestrutura como sangue de animais, cristais líquidos, suspensões, entre outros. Para tal, utilizamos um método desenvolvido por M. Schonbek, conhecido como Método de Decomposição de Fourier. A fim de apresentar o método, primeiramente mostramos como o mesmo foi aplicado no contexto de leis de conservação parabólicas e das equações de Navier-Stokes para obter estimativas de decaimento. Feito isto, assumindo a existência de soluções para o sistema de fluido micropolar com condições de Dirichlet no infinito, obtemos decaimento no caso em que as forças externas do sistema são nulas ou decaem a uma razão apropriada. Por fim, construindo funções suavizantes e soluções aproximadas, garantimos a existência de soluções das equações de fluido micropolar em espaços funcionais convenientes e provamos a estimativa de decaimento desejada.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAnálise matemáticaEquações diferenciaisL² decay for weak solutions of the micropolar equations on R³info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Lorena Brizza Soares Freitas.pdf.jpgTESE Lorena Brizza Soares Freitas.pdf.jpgGenerated Thumbnailimage/jpeg1202https://repositorio.ufpe.br/bitstream/123456789/31009/5/TESE%20Lorena%20Brizza%20Soares%20Freitas.pdf.jpg3f8ada6d5376d0729a89d18403db4be1MD55ORIGINALTESE Lorena Brizza Soares Freitas.pdfTESE Lorena Brizza Soares Freitas.pdfapplication/pdf874387https://repositorio.ufpe.br/bitstream/123456789/31009/1/TESE%20Lorena%20Brizza%20Soares%20Freitas.pdfef673d9c0adeaed3147de15dff5d1699MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/31009/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/31009/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTESE Lorena Brizza Soares Freitas.pdf.txtTESE Lorena Brizza Soares Freitas.pdf.txtExtracted texttext/plain81304https://repositorio.ufpe.br/bitstream/123456789/31009/4/TESE%20Lorena%20Brizza%20Soares%20Freitas.pdf.txt1d1f8840587c4c619fef0ba134004251MD54123456789/310092019-10-25 10:34:04.788oai:repositorio.ufpe.br:123456789/31009TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T13:34:04Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
L² decay for weak solutions of the micropolar equations on R³ |
title |
L² decay for weak solutions of the micropolar equations on R³ |
spellingShingle |
L² decay for weak solutions of the micropolar equations on R³ FREITAS, Lorena Brizza Soares Análise matemática Equações diferenciais |
title_short |
L² decay for weak solutions of the micropolar equations on R³ |
title_full |
L² decay for weak solutions of the micropolar equations on R³ |
title_fullStr |
L² decay for weak solutions of the micropolar equations on R³ |
title_full_unstemmed |
L² decay for weak solutions of the micropolar equations on R³ |
title_sort |
L² decay for weak solutions of the micropolar equations on R³ |
author |
FREITAS, Lorena Brizza Soares |
author_facet |
FREITAS, Lorena Brizza Soares |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/2302580820419163 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/3205167619554233 |
dc.contributor.author.fl_str_mv |
FREITAS, Lorena Brizza Soares |
dc.contributor.advisor1.fl_str_mv |
BRAZ E SILVA, Pablo Gustavo Albuquerque |
dc.contributor.advisor-co1.fl_str_mv |
CRUZ, Felipe Wergete |
contributor_str_mv |
BRAZ E SILVA, Pablo Gustavo Albuquerque CRUZ, Felipe Wergete |
dc.subject.por.fl_str_mv |
Análise matemática Equações diferenciais |
topic |
Análise matemática Equações diferenciais |
description |
We obtain decay estimates for solutions of the micropolar fluid equations . Such equations, proposed by A. C. Eringen, generalize the classic model of Navier-Stokes and describe the behavior of fluids with microstructure such as animal blood, liquid crystals, suspensions, among others. For this, we use a method developed by M. Schonbek, known by Fourier Splitting Method. In order to present the method, we first show how it was applied in the context of parabolic conservation laws and the Navier-Stokes equations to obtain decay estimates. Having done this, assuming the existence for solutions of the micropolar fluid system with Dirichlet conditions at infinity and we show the result when the external forces are either null or decay at an appropriate rate. Lastly, through retarded mollifiers and approximate solutions, we guarantee the existence of solutions for the micropolar fluidequations in convenient functional spaces and we prove the desired decay bound. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-06-14 |
dc.date.accessioned.fl_str_mv |
2019-06-10T23:16:38Z |
dc.date.available.fl_str_mv |
2019-06-10T23:16:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/31009 |
url |
https://repositorio.ufpe.br/handle/123456789/31009 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Matematica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/31009/5/TESE%20Lorena%20Brizza%20Soares%20Freitas.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/31009/1/TESE%20Lorena%20Brizza%20Soares%20Freitas.pdf https://repositorio.ufpe.br/bitstream/123456789/31009/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/31009/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/31009/4/TESE%20Lorena%20Brizza%20Soares%20Freitas.pdf.txt |
bitstream.checksum.fl_str_mv |
3f8ada6d5376d0729a89d18403db4be1 ef673d9c0adeaed3147de15dff5d1699 e39d27027a6cc9cb039ad269a5db8e34 4b8a02c7f2818eaf00dcf2260dd5eb08 1d1f8840587c4c619fef0ba134004251 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1823423109354487808 |