Mineração de dados baseada em árvores de decisão para análise do perfil de contribuintes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000wf5z |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/1476 |
Resumo: | Um dos principais problemas enfrentados por órgãos públicos atualmente está associado à ineficiência no uso de informações contidas em grandes volumes de dados para a gestão e otimização de recursos públicos nos procedimentos de tomada de decisão. Em particular, um dos problemas enfrentados por órgãos reguladores como secretarias de fazenda de Estados é como identificar comportamentos fraudulentos e de sonegação fiscal por parte de contribuintes. A Descoberta de Conhecimento em Bases de Dados (KDD) tem sido cada vez mais explorada como uma ferramenta poderosa na otimização dos procedimentos de tomada de decisão e na extração automática de informações escondidas nos dados de corporações. Em particular, técnicas baseadas em árvores de decisão têm sido investigadas e aplicadas como uma das opções de ferramental tecnológico em problemas de mineração de dados pela sua simplicidade e facilidade de interpretação do conhecimento descoberto, que é próximo da linguagem humana. Neste trabalho, árvores de decisão baseadas nos algoritmos ID3, SPRINT e SLIQ são investigadas e comparadas para a solução do problema de análise do perfil de contribuintes com respeito à sonegação fiscal em uma situação complexa em larga escala envolvendo um grande número de variáveis e dados corporativos da Secretaria da Fazenda do Estado de Pernambuco (SEFAZPE). Os resultados obtidos objetivamente com os modelos investigados quanto à precisão das árvores construídas, interpretação do conhecimento minerado e extração de novos conhecimentos ao domínio do problema mostraram desempenho satisfatório na tarefa de classificação dos contribuintes quanto a irregularidades nos compromissos de pagamentos fiscais. A solução desenvolvida foi também analisada e validada subjetivamente por especialistas do domínio (auditores fiscais), que demonstraram aceitação no trabalho realizado e comprovando a viabilidade e relevância do uso da mineração de dados no processo de análise do perfil de contribuintes |
id |
UFPE_70a0d86082070e9ebfcaf01069f2369e |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/1476 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SIMÕES, Adriana Carla AraújoVASCONCELOS, Germano Crispim2014-06-12T15:50:25Z2014-06-12T15:50:25Z2008-01-31Carla Araújo Simões, Adriana; Crispim Vasconcelos, Germano. Mineração de dados baseada em árvores de decisão para análise do perfil de contribuintes. 2008. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008.https://repositorio.ufpe.br/handle/123456789/1476ark:/64986/001300000wf5zUm dos principais problemas enfrentados por órgãos públicos atualmente está associado à ineficiência no uso de informações contidas em grandes volumes de dados para a gestão e otimização de recursos públicos nos procedimentos de tomada de decisão. Em particular, um dos problemas enfrentados por órgãos reguladores como secretarias de fazenda de Estados é como identificar comportamentos fraudulentos e de sonegação fiscal por parte de contribuintes. A Descoberta de Conhecimento em Bases de Dados (KDD) tem sido cada vez mais explorada como uma ferramenta poderosa na otimização dos procedimentos de tomada de decisão e na extração automática de informações escondidas nos dados de corporações. Em particular, técnicas baseadas em árvores de decisão têm sido investigadas e aplicadas como uma das opções de ferramental tecnológico em problemas de mineração de dados pela sua simplicidade e facilidade de interpretação do conhecimento descoberto, que é próximo da linguagem humana. Neste trabalho, árvores de decisão baseadas nos algoritmos ID3, SPRINT e SLIQ são investigadas e comparadas para a solução do problema de análise do perfil de contribuintes com respeito à sonegação fiscal em uma situação complexa em larga escala envolvendo um grande número de variáveis e dados corporativos da Secretaria da Fazenda do Estado de Pernambuco (SEFAZPE). Os resultados obtidos objetivamente com os modelos investigados quanto à precisão das árvores construídas, interpretação do conhecimento minerado e extração de novos conhecimentos ao domínio do problema mostraram desempenho satisfatório na tarefa de classificação dos contribuintes quanto a irregularidades nos compromissos de pagamentos fiscais. A solução desenvolvida foi também analisada e validada subjetivamente por especialistas do domínio (auditores fiscais), que demonstraram aceitação no trabalho realizado e comprovando a viabilidade e relevância do uso da mineração de dados no processo de análise do perfil de contribuintesporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDescoberta de conhecimento em Banco de Dados (DCBD)Árvores de decisãoMineração de DadosMineração de dados baseada em árvores de decisão para análise do perfil de contribuintesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILacas.pdf.jpgacas.pdf.jpgGenerated Thumbnailimage/jpeg1338https://repositorio.ufpe.br/bitstream/123456789/1476/4/acas.pdf.jpg948f9b806319f84b530bdb5b1610a0d8MD54LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/1476/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALacas.pdfacas.pdfapplication/pdf1318829https://repositorio.ufpe.br/bitstream/123456789/1476/2/acas.pdfdd6846bf073c84c0b7c2897f1447c17aMD52TEXTacas.pdf.txtacas.pdf.txtExtracted texttext/plain295398https://repositorio.ufpe.br/bitstream/123456789/1476/3/acas.pdf.txtc1452b4de07cffad1abda677ec7a55c4MD53123456789/14762019-10-25 18:46:24.583oai:repositorio.ufpe.br:123456789/1476Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T21:46:24Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Mineração de dados baseada em árvores de decisão para análise do perfil de contribuintes |
title |
Mineração de dados baseada em árvores de decisão para análise do perfil de contribuintes |
spellingShingle |
Mineração de dados baseada em árvores de decisão para análise do perfil de contribuintes SIMÕES, Adriana Carla Araújo Descoberta de conhecimento em Banco de Dados (DCBD) Árvores de decisão Mineração de Dados |
title_short |
Mineração de dados baseada em árvores de decisão para análise do perfil de contribuintes |
title_full |
Mineração de dados baseada em árvores de decisão para análise do perfil de contribuintes |
title_fullStr |
Mineração de dados baseada em árvores de decisão para análise do perfil de contribuintes |
title_full_unstemmed |
Mineração de dados baseada em árvores de decisão para análise do perfil de contribuintes |
title_sort |
Mineração de dados baseada em árvores de decisão para análise do perfil de contribuintes |
author |
SIMÕES, Adriana Carla Araújo |
author_facet |
SIMÕES, Adriana Carla Araújo |
author_role |
author |
dc.contributor.author.fl_str_mv |
SIMÕES, Adriana Carla Araújo |
dc.contributor.advisor1.fl_str_mv |
VASCONCELOS, Germano Crispim |
contributor_str_mv |
VASCONCELOS, Germano Crispim |
dc.subject.por.fl_str_mv |
Descoberta de conhecimento em Banco de Dados (DCBD) Árvores de decisão Mineração de Dados |
topic |
Descoberta de conhecimento em Banco de Dados (DCBD) Árvores de decisão Mineração de Dados |
description |
Um dos principais problemas enfrentados por órgãos públicos atualmente está associado à ineficiência no uso de informações contidas em grandes volumes de dados para a gestão e otimização de recursos públicos nos procedimentos de tomada de decisão. Em particular, um dos problemas enfrentados por órgãos reguladores como secretarias de fazenda de Estados é como identificar comportamentos fraudulentos e de sonegação fiscal por parte de contribuintes. A Descoberta de Conhecimento em Bases de Dados (KDD) tem sido cada vez mais explorada como uma ferramenta poderosa na otimização dos procedimentos de tomada de decisão e na extração automática de informações escondidas nos dados de corporações. Em particular, técnicas baseadas em árvores de decisão têm sido investigadas e aplicadas como uma das opções de ferramental tecnológico em problemas de mineração de dados pela sua simplicidade e facilidade de interpretação do conhecimento descoberto, que é próximo da linguagem humana. Neste trabalho, árvores de decisão baseadas nos algoritmos ID3, SPRINT e SLIQ são investigadas e comparadas para a solução do problema de análise do perfil de contribuintes com respeito à sonegação fiscal em uma situação complexa em larga escala envolvendo um grande número de variáveis e dados corporativos da Secretaria da Fazenda do Estado de Pernambuco (SEFAZPE). Os resultados obtidos objetivamente com os modelos investigados quanto à precisão das árvores construídas, interpretação do conhecimento minerado e extração de novos conhecimentos ao domínio do problema mostraram desempenho satisfatório na tarefa de classificação dos contribuintes quanto a irregularidades nos compromissos de pagamentos fiscais. A solução desenvolvida foi também analisada e validada subjetivamente por especialistas do domínio (auditores fiscais), que demonstraram aceitação no trabalho realizado e comprovando a viabilidade e relevância do uso da mineração de dados no processo de análise do perfil de contribuintes |
publishDate |
2008 |
dc.date.issued.fl_str_mv |
2008-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T15:50:25Z |
dc.date.available.fl_str_mv |
2014-06-12T15:50:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Carla Araújo Simões, Adriana; Crispim Vasconcelos, Germano. Mineração de dados baseada em árvores de decisão para análise do perfil de contribuintes. 2008. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/1476 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000wf5z |
identifier_str_mv |
Carla Araújo Simões, Adriana; Crispim Vasconcelos, Germano. Mineração de dados baseada em árvores de decisão para análise do perfil de contribuintes. 2008. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008. ark:/64986/001300000wf5z |
url |
https://repositorio.ufpe.br/handle/123456789/1476 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/1476/4/acas.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/1476/1/license.txt https://repositorio.ufpe.br/bitstream/123456789/1476/2/acas.pdf https://repositorio.ufpe.br/bitstream/123456789/1476/3/acas.pdf.txt |
bitstream.checksum.fl_str_mv |
948f9b806319f84b530bdb5b1610a0d8 8a4605be74aa9ea9d79846c1fba20a33 dd6846bf073c84c0b7c2897f1447c17a c1452b4de07cffad1abda677ec7a55c4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172934069649408 |