Aprendizagem ativa em sistemas de filtragem colaborativa
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000x2tv |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/2608 |
Resumo: | Nos dias de hoje, a quantidade de informação disponível é muito maior do que nossa capacidade de tratá-la. Vemos-nos diante de centenas de canais de televisão, dezenas de filmes para ver e milhares de produtos nas lojas de comércio eletrônico. Quando precisamos tomar uma decisão e não conhecemos todas as alternativas possíveis, uma abordagem bastante freqüente é buscar a recomendação de outras pessoas. Na década de 1990 surgiram sistemas computacionais capazes de automatizar o processo de recomendações. Em geral os Sistemas de Recomendação, como ficaram conhecidos, coletam indicadores das preferências dos usuários para fornecer-lhes uma visão personalizada da informação. Uma abordagem amplamente empregada nos Sistemas de Recomendação é a Filtragem Colaborativa (FC), em que a produção das sugestões é feita com base na similaridade entre usuários. Assim, para prever a relevância que um item i terá para um usuário alvo u, o sistema se baseia nas opiniões dos usuários com preferências similares às de u sobre i. Um problema freqüente nos Sistemas de Recomendação diz respeito à chegada de um novo usuário. Nessa situação, o sistema não conhece nada a respeito das preferências dele e também não é capaz de gerar-lhe recomendações. Nos sistemas que utilizam FC isto também ocorre, pois a similaridade entre os usuários é computada com base nos itens que eles avaliaram em comum. Para amenizar esse problema, uma solução é que haja uma etapa inicial na utilização do sistema em que sejam apresentados alguns itens para o usuário novato avaliar. No entanto isso precisa ser feito de maneira eficiente, para que o sistema adquira o máximo de informação com um mínimo de esforço do usuário. O paradigma de aprendizagem em que o algoritmo controla os exemplos utilizados no treinamento para otimizar o processo é chamado de aprendizagem ativa. A aplicação dessa técnica para melhorar o processo de aquisição das preferências do usuário em sistemas de FC tem sido alvo de vários estudos. Em um deles foi proposto o método ActiveCP que combinava a controvérsia e da popularidade de um item para determinar a ordem em que seriam apresentados para serem avaliados pelo usuário. O método apresentou bons resultados experimentais. Neste trabalho, é investigada a utilização de uma nova medida de controvérsia capaz de resolver várias das restrições presentes na metodologia originalmente proposta no ActiveCP. É também apresentada uma nova metodologia, mais simples, com uma melhor aplicabilidade prática e que mantém os ganhos de informação na aquisição das preferências dos usuários obtidos pelo método original. Finalmente, a nova metodologia é avaliada em uma base de usuários com avaliações de filmes que simula a base de dados de um sistema em início de operação |
id |
UFPE_71f401e78065552d4d718b65a03fdaaf |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/2608 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SAMPAIO, Igor AzevedoRAMALHO, Geber Lisboa2014-06-12T15:59:37Z2014-06-12T15:59:37Z2006Azevedo Sampaio, Igor; Lisboa Ramalho, Geber. Aprendizagem ativa em sistemas de filtragem colaborativa. 2006. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2006.https://repositorio.ufpe.br/handle/123456789/2608ark:/64986/001300000x2tvNos dias de hoje, a quantidade de informação disponível é muito maior do que nossa capacidade de tratá-la. Vemos-nos diante de centenas de canais de televisão, dezenas de filmes para ver e milhares de produtos nas lojas de comércio eletrônico. Quando precisamos tomar uma decisão e não conhecemos todas as alternativas possíveis, uma abordagem bastante freqüente é buscar a recomendação de outras pessoas. Na década de 1990 surgiram sistemas computacionais capazes de automatizar o processo de recomendações. Em geral os Sistemas de Recomendação, como ficaram conhecidos, coletam indicadores das preferências dos usuários para fornecer-lhes uma visão personalizada da informação. Uma abordagem amplamente empregada nos Sistemas de Recomendação é a Filtragem Colaborativa (FC), em que a produção das sugestões é feita com base na similaridade entre usuários. Assim, para prever a relevância que um item i terá para um usuário alvo u, o sistema se baseia nas opiniões dos usuários com preferências similares às de u sobre i. Um problema freqüente nos Sistemas de Recomendação diz respeito à chegada de um novo usuário. Nessa situação, o sistema não conhece nada a respeito das preferências dele e também não é capaz de gerar-lhe recomendações. Nos sistemas que utilizam FC isto também ocorre, pois a similaridade entre os usuários é computada com base nos itens que eles avaliaram em comum. Para amenizar esse problema, uma solução é que haja uma etapa inicial na utilização do sistema em que sejam apresentados alguns itens para o usuário novato avaliar. No entanto isso precisa ser feito de maneira eficiente, para que o sistema adquira o máximo de informação com um mínimo de esforço do usuário. O paradigma de aprendizagem em que o algoritmo controla os exemplos utilizados no treinamento para otimizar o processo é chamado de aprendizagem ativa. A aplicação dessa técnica para melhorar o processo de aquisição das preferências do usuário em sistemas de FC tem sido alvo de vários estudos. Em um deles foi proposto o método ActiveCP que combinava a controvérsia e da popularidade de um item para determinar a ordem em que seriam apresentados para serem avaliados pelo usuário. O método apresentou bons resultados experimentais. Neste trabalho, é investigada a utilização de uma nova medida de controvérsia capaz de resolver várias das restrições presentes na metodologia originalmente proposta no ActiveCP. É também apresentada uma nova metodologia, mais simples, com uma melhor aplicabilidade prática e que mantém os ganhos de informação na aquisição das preferências dos usuários obtidos pelo método original. Finalmente, a nova metodologia é avaliada em uma base de usuários com avaliações de filmes que simula a base de dados de um sistema em início de operaçãoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessSistemas de recomendaçãoFiltragem colaborativaProblema do usuário novoAprendizagem ativaAprendizagem ativa em sistemas de filtragem colaborativainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALarquivo5346_1.pdfapplication/pdf1776923https://repositorio.ufpe.br/bitstream/123456789/2608/1/arquivo5346_1.pdff744986693684a54ed4294ce35659f25MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/2608/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo5346_1.pdf.txtarquivo5346_1.pdf.txtExtracted texttext/plain144181https://repositorio.ufpe.br/bitstream/123456789/2608/3/arquivo5346_1.pdf.txtfdba9c6f1c9822842a834d4d715481d6MD53THUMBNAILarquivo5346_1.pdf.jpgarquivo5346_1.pdf.jpgGenerated Thumbnailimage/jpeg1365https://repositorio.ufpe.br/bitstream/123456789/2608/4/arquivo5346_1.pdf.jpg76b93527955aceb779d14844fed23573MD54123456789/26082019-10-25 02:55:57.574oai:repositorio.ufpe.br:123456789/2608Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:55:57Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Aprendizagem ativa em sistemas de filtragem colaborativa |
title |
Aprendizagem ativa em sistemas de filtragem colaborativa |
spellingShingle |
Aprendizagem ativa em sistemas de filtragem colaborativa SAMPAIO, Igor Azevedo Sistemas de recomendação Filtragem colaborativa Problema do usuário novo Aprendizagem ativa |
title_short |
Aprendizagem ativa em sistemas de filtragem colaborativa |
title_full |
Aprendizagem ativa em sistemas de filtragem colaborativa |
title_fullStr |
Aprendizagem ativa em sistemas de filtragem colaborativa |
title_full_unstemmed |
Aprendizagem ativa em sistemas de filtragem colaborativa |
title_sort |
Aprendizagem ativa em sistemas de filtragem colaborativa |
author |
SAMPAIO, Igor Azevedo |
author_facet |
SAMPAIO, Igor Azevedo |
author_role |
author |
dc.contributor.author.fl_str_mv |
SAMPAIO, Igor Azevedo |
dc.contributor.advisor1.fl_str_mv |
RAMALHO, Geber Lisboa |
contributor_str_mv |
RAMALHO, Geber Lisboa |
dc.subject.por.fl_str_mv |
Sistemas de recomendação Filtragem colaborativa Problema do usuário novo Aprendizagem ativa |
topic |
Sistemas de recomendação Filtragem colaborativa Problema do usuário novo Aprendizagem ativa |
description |
Nos dias de hoje, a quantidade de informação disponível é muito maior do que nossa capacidade de tratá-la. Vemos-nos diante de centenas de canais de televisão, dezenas de filmes para ver e milhares de produtos nas lojas de comércio eletrônico. Quando precisamos tomar uma decisão e não conhecemos todas as alternativas possíveis, uma abordagem bastante freqüente é buscar a recomendação de outras pessoas. Na década de 1990 surgiram sistemas computacionais capazes de automatizar o processo de recomendações. Em geral os Sistemas de Recomendação, como ficaram conhecidos, coletam indicadores das preferências dos usuários para fornecer-lhes uma visão personalizada da informação. Uma abordagem amplamente empregada nos Sistemas de Recomendação é a Filtragem Colaborativa (FC), em que a produção das sugestões é feita com base na similaridade entre usuários. Assim, para prever a relevância que um item i terá para um usuário alvo u, o sistema se baseia nas opiniões dos usuários com preferências similares às de u sobre i. Um problema freqüente nos Sistemas de Recomendação diz respeito à chegada de um novo usuário. Nessa situação, o sistema não conhece nada a respeito das preferências dele e também não é capaz de gerar-lhe recomendações. Nos sistemas que utilizam FC isto também ocorre, pois a similaridade entre os usuários é computada com base nos itens que eles avaliaram em comum. Para amenizar esse problema, uma solução é que haja uma etapa inicial na utilização do sistema em que sejam apresentados alguns itens para o usuário novato avaliar. No entanto isso precisa ser feito de maneira eficiente, para que o sistema adquira o máximo de informação com um mínimo de esforço do usuário. O paradigma de aprendizagem em que o algoritmo controla os exemplos utilizados no treinamento para otimizar o processo é chamado de aprendizagem ativa. A aplicação dessa técnica para melhorar o processo de aquisição das preferências do usuário em sistemas de FC tem sido alvo de vários estudos. Em um deles foi proposto o método ActiveCP que combinava a controvérsia e da popularidade de um item para determinar a ordem em que seriam apresentados para serem avaliados pelo usuário. O método apresentou bons resultados experimentais. Neste trabalho, é investigada a utilização de uma nova medida de controvérsia capaz de resolver várias das restrições presentes na metodologia originalmente proposta no ActiveCP. É também apresentada uma nova metodologia, mais simples, com uma melhor aplicabilidade prática e que mantém os ganhos de informação na aquisição das preferências dos usuários obtidos pelo método original. Finalmente, a nova metodologia é avaliada em uma base de usuários com avaliações de filmes que simula a base de dados de um sistema em início de operação |
publishDate |
2006 |
dc.date.issued.fl_str_mv |
2006 |
dc.date.accessioned.fl_str_mv |
2014-06-12T15:59:37Z |
dc.date.available.fl_str_mv |
2014-06-12T15:59:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Azevedo Sampaio, Igor; Lisboa Ramalho, Geber. Aprendizagem ativa em sistemas de filtragem colaborativa. 2006. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2006. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/2608 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000x2tv |
identifier_str_mv |
Azevedo Sampaio, Igor; Lisboa Ramalho, Geber. Aprendizagem ativa em sistemas de filtragem colaborativa. 2006. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2006. ark:/64986/001300000x2tv |
url |
https://repositorio.ufpe.br/handle/123456789/2608 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/2608/1/arquivo5346_1.pdf https://repositorio.ufpe.br/bitstream/123456789/2608/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/2608/3/arquivo5346_1.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/2608/4/arquivo5346_1.pdf.jpg |
bitstream.checksum.fl_str_mv |
f744986693684a54ed4294ce35659f25 8a4605be74aa9ea9d79846c1fba20a33 fdba9c6f1c9822842a834d4d715481d6 76b93527955aceb779d14844fed23573 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172939918606336 |