Numerical Determination of Local Models in Networks

Detalhes bibliográficos
Autor(a) principal: SILVA FILHO, José Mário da
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/00130000048wx
Texto Completo: https://repositorio.ufpe.br/handle/123456789/45707
Resumo: Taking advantage of the fact that the cardinalities of hidden variables in network scenarios can be taken to be finite without loss of generality, a numerical tool for finding explicit local models that reproduce a given statistical behaviour was developed. The numerical procedure was then applied to get numerical estimates to two interesting problems in the context of network non-locality: i) for which critical visibility the Greenberger-Horne-Zeilinger (GHZ) distribution ceases to be local in the triangle scenario with no inputs; ii) what is the boundary of the local set in a given 2-dimensional slice of the probability space for the bilocal network with binary inputs and outputs. For the first problem: a critical visibility of v ≈ 1/3 was found; behaviours with v ≤ 1/3 were proven to be trilocal; and numerical evidence that behaviours with v > 1/3 are not trilocal was found. For the second problem: a closed set that approximates the bilocal set was found; behaviours inside this set were proven to be bilocal; and numerical evidence that behaviours outside this set are not bilocal was found.
id UFPE_73489b02a72f581231084422560802be
oai_identifier_str oai:repositorio.ufpe.br:123456789/45707
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling SILVA FILHO, José Mário dahttp://lattes.cnpq.br/7451658211216704http://lattes.cnpq.br/8059508629232656PARISIO FILHO, Fernando Roberto de Luna2022-08-15T14:35:49Z2022-08-15T14:35:49Z2022-05-13SILVA FILHO, José Mário da. Numerical determination of local models in networks. 2022. Dissertação (Mestrado em Física) - Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/45707ark:/64986/00130000048wxTaking advantage of the fact that the cardinalities of hidden variables in network scenarios can be taken to be finite without loss of generality, a numerical tool for finding explicit local models that reproduce a given statistical behaviour was developed. The numerical procedure was then applied to get numerical estimates to two interesting problems in the context of network non-locality: i) for which critical visibility the Greenberger-Horne-Zeilinger (GHZ) distribution ceases to be local in the triangle scenario with no inputs; ii) what is the boundary of the local set in a given 2-dimensional slice of the probability space for the bilocal network with binary inputs and outputs. For the first problem: a critical visibility of v ≈ 1/3 was found; behaviours with v ≤ 1/3 were proven to be trilocal; and numerical evidence that behaviours with v > 1/3 are not trilocal was found. For the second problem: a closed set that approximates the bilocal set was found; behaviours inside this set were proven to be bilocal; and numerical evidence that behaviours outside this set are not bilocal was found.CAPESValendo-se do fato de que as cardinalidades de variáveis ocultas em cenários de rede podem ser assumidas finitas sem perda de generalidade, foi desenvolvida uma ferramenta numérica para encontrar modelos locais explícitos que reproduzem um comportamento esta- tístico dado. O procedimento numérico foi então utilizado para obter estimativas numéricas para dois problemas interessantes no contexto de não-localidade em redes: i) para qual visibi- lidade crítica a distribuição Greenberger-Horne-Zeilinger (GHZ) deixa de ser local no cenário triangular sem inputs; ii) qual a fronteira do conjunto local em uma dada secção bidimensional do espaço de probabilidades para a rede bilocal com inputs e outputs binários. Para o primeiro problema: encontrou-se uma visibilidade crítica de v ≈ 1/3; provou-se que comportamentos com v ≤ 1/3 são trilocais; e encontrou-se evidência numérica de que comportamentos com v > 1/3 não são trilocais. Para o segundo problema: encontrou-se um conjunto fechado que aproxima o conjunto bilocal; provou-se que comportamentos no interior desse conjunto são bilocais; e encontrou-se evidência numérica de que comportamentos no exterior desse conjunto não são bilocais.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em FisicaUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFísica teórica e computacionalNão-localidade quântica em redesModelos n-locaisNão-localidade de BellNumerical Determination of Local Models in Networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALDISSERTAÇÃO José Mário da Silva Filho.pdfDISSERTAÇÃO José Mário da Silva Filho.pdfapplication/pdf714929https://repositorio.ufpe.br/bitstream/123456789/45707/1/DISSERTA%c3%87%c3%83O%20Jos%c3%a9%20M%c3%a1rio%20da%20Silva%20Filho.pdf69a9fad2cbe092b3b22e388795535014MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/45707/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82142https://repositorio.ufpe.br/bitstream/123456789/45707/3/license.txt6928b9260b07fb2755249a5ca9903395MD53TEXTDISSERTAÇÃO José Mário da Silva Filho.pdf.txtDISSERTAÇÃO José Mário da Silva Filho.pdf.txtExtracted texttext/plain98697https://repositorio.ufpe.br/bitstream/123456789/45707/4/DISSERTA%c3%87%c3%83O%20Jos%c3%a9%20M%c3%a1rio%20da%20Silva%20Filho.pdf.txte8e48696f8814d6e5cffd00dc49949caMD54THUMBNAILDISSERTAÇÃO José Mário da Silva Filho.pdf.jpgDISSERTAÇÃO José Mário da Silva Filho.pdf.jpgGenerated Thumbnailimage/jpeg1197https://repositorio.ufpe.br/bitstream/123456789/45707/5/DISSERTA%c3%87%c3%83O%20Jos%c3%a9%20M%c3%a1rio%20da%20Silva%20Filho.pdf.jpgc381c0d59682e99186266ee067f3f321MD55123456789/457072022-08-16 02:19:10.229oai:repositorio.ufpe.br:123456789/45707VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBkZSBEb2N1bWVudG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUKIAoKRGVjbGFybyBlc3RhciBjaWVudGUgZGUgcXVlIGVzdGUgVGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyB0ZW0gbyBvYmpldGl2byBkZSBkaXZ1bGdhw6fDo28gZG9zIGRvY3VtZW50b3MgZGVwb3NpdGFkb3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBlIGRlY2xhcm8gcXVlOgoKSSAtICBvIGNvbnRlw7pkbyBkaXNwb25pYmlsaXphZG8gw6kgZGUgcmVzcG9uc2FiaWxpZGFkZSBkZSBzdWEgYXV0b3JpYTsKCklJIC0gbyBjb250ZcO6ZG8gw6kgb3JpZ2luYWwsIGUgc2UgbyB0cmFiYWxobyBlL291IHBhbGF2cmFzIGRlIG91dHJhcyBwZXNzb2FzIGZvcmFtIHV0aWxpemFkb3MsIGVzdGFzIGZvcmFtIGRldmlkYW1lbnRlIHJlY29uaGVjaWRhczsKCklJSSAtIHF1YW5kbyB0cmF0YXItc2UgZGUgVHJhYmFsaG8gZGUgQ29uY2x1c8OjbyBkZSBDdXJzbywgRGlzc2VydGHDp8OjbyBvdSBUZXNlOiBvIGFycXVpdm8gZGVwb3NpdGFkbyBjb3JyZXNwb25kZSDDoCB2ZXJzw6NvIGZpbmFsIGRvIHRyYWJhbGhvOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogZXN0b3UgY2llbnRlIGRlIHF1ZSBhIGFsdGVyYcOnw6NvIGRhIG1vZGFsaWRhZGUgZGUgYWNlc3NvIGFvIGRvY3VtZW50byBhcMOzcyBvIGRlcMOzc2l0byBlIGFudGVzIGRlIGZpbmRhciBvIHBlcsOtb2RvIGRlIGVtYmFyZ28sIHF1YW5kbyBmb3IgZXNjb2xoaWRvIGFjZXNzbyByZXN0cml0bywgc2Vyw6EgcGVybWl0aWRhIG1lZGlhbnRlIHNvbGljaXRhw6fDo28gZG8gKGEpIGF1dG9yIChhKSBhbyBTaXN0ZW1hIEludGVncmFkbyBkZSBCaWJsaW90ZWNhcyBkYSBVRlBFIChTSUIvVUZQRSkuCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBBYmVydG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBhcnQuIDI5LCBpbmNpc28gSUlJLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFBlcm5hbWJ1Y28gYSBkaXNwb25pYmlsaXphciBncmF0dWl0YW1lbnRlLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHBhcmEgZmlucyBkZSBsZWl0dXJhLCBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQgKGFxdWlzacOnw6NvKSBhdHJhdsOpcyBkbyBzaXRlIGRvIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgbm8gZW5kZXJlw6dvIGh0dHA6Ly93d3cucmVwb3NpdG9yaW8udWZwZS5iciwgYSBwYXJ0aXIgZGEgZGF0YSBkZSBkZXDDs3NpdG8uCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBSZXN0cml0bzoKCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBhdXRvciBxdWUgcmVjYWVtIHNvYnJlIGVzdGUgZG9jdW1lbnRvLCBmdW5kYW1lbnRhZG8gbmEgTGVpIGRlIERpcmVpdG8gQXV0b3JhbCBubyA5LjYxMCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIHF1YW5kbyBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvIGNvbmRpemVudGUgYW8gdGlwbyBkZSBkb2N1bWVudG8sIGNvbmZvcm1lIGluZGljYWRvIG5vIGNhbXBvIERhdGEgZGUgRW1iYXJnby4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-08-16T05:19:10Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Numerical Determination of Local Models in Networks
title Numerical Determination of Local Models in Networks
spellingShingle Numerical Determination of Local Models in Networks
SILVA FILHO, José Mário da
Física teórica e computacional
Não-localidade quântica em redes
Modelos n-locais
Não-localidade de Bell
title_short Numerical Determination of Local Models in Networks
title_full Numerical Determination of Local Models in Networks
title_fullStr Numerical Determination of Local Models in Networks
title_full_unstemmed Numerical Determination of Local Models in Networks
title_sort Numerical Determination of Local Models in Networks
author SILVA FILHO, José Mário da
author_facet SILVA FILHO, José Mário da
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/7451658211216704
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/8059508629232656
dc.contributor.author.fl_str_mv SILVA FILHO, José Mário da
dc.contributor.advisor1.fl_str_mv PARISIO FILHO, Fernando Roberto de Luna
contributor_str_mv PARISIO FILHO, Fernando Roberto de Luna
dc.subject.por.fl_str_mv Física teórica e computacional
Não-localidade quântica em redes
Modelos n-locais
Não-localidade de Bell
topic Física teórica e computacional
Não-localidade quântica em redes
Modelos n-locais
Não-localidade de Bell
description Taking advantage of the fact that the cardinalities of hidden variables in network scenarios can be taken to be finite without loss of generality, a numerical tool for finding explicit local models that reproduce a given statistical behaviour was developed. The numerical procedure was then applied to get numerical estimates to two interesting problems in the context of network non-locality: i) for which critical visibility the Greenberger-Horne-Zeilinger (GHZ) distribution ceases to be local in the triangle scenario with no inputs; ii) what is the boundary of the local set in a given 2-dimensional slice of the probability space for the bilocal network with binary inputs and outputs. For the first problem: a critical visibility of v ≈ 1/3 was found; behaviours with v ≤ 1/3 were proven to be trilocal; and numerical evidence that behaviours with v > 1/3 are not trilocal was found. For the second problem: a closed set that approximates the bilocal set was found; behaviours inside this set were proven to be bilocal; and numerical evidence that behaviours outside this set are not bilocal was found.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-08-15T14:35:49Z
dc.date.available.fl_str_mv 2022-08-15T14:35:49Z
dc.date.issued.fl_str_mv 2022-05-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA FILHO, José Mário da. Numerical determination of local models in networks. 2022. Dissertação (Mestrado em Física) - Universidade Federal de Pernambuco, Recife, 2022.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/45707
dc.identifier.dark.fl_str_mv ark:/64986/00130000048wx
identifier_str_mv SILVA FILHO, José Mário da. Numerical determination of local models in networks. 2022. Dissertação (Mestrado em Física) - Universidade Federal de Pernambuco, Recife, 2022.
ark:/64986/00130000048wx
url https://repositorio.ufpe.br/handle/123456789/45707
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Fisica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/45707/1/DISSERTA%c3%87%c3%83O%20Jos%c3%a9%20M%c3%a1rio%20da%20Silva%20Filho.pdf
https://repositorio.ufpe.br/bitstream/123456789/45707/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/45707/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/45707/4/DISSERTA%c3%87%c3%83O%20Jos%c3%a9%20M%c3%a1rio%20da%20Silva%20Filho.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/45707/5/DISSERTA%c3%87%c3%83O%20Jos%c3%a9%20M%c3%a1rio%20da%20Silva%20Filho.pdf.jpg
bitstream.checksum.fl_str_mv 69a9fad2cbe092b3b22e388795535014
e39d27027a6cc9cb039ad269a5db8e34
6928b9260b07fb2755249a5ca9903395
e8e48696f8814d6e5cffd00dc49949ca
c381c0d59682e99186266ee067f3f321
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172718175191040