Dualidade local

Detalhes bibliográficos
Autor(a) principal: Vinícius Santos Dória, André
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000005sbb
Texto Completo: https://repositorio.ufpe.br/handle/123456789/7558
Resumo: Esta dissertação tem como objetivos um estudo detalhado do módulo canônico e do funtor dualizante para anéis de Cohen-Macaulay locais e as demonstrações dos teoremas de dualidade de Grothendieck. Iniciamos com o caso Artiniano e depois estendemos ao caso geral. Analisamos a unicidade do funtor dualizante através da interveniência do módulo canônico, uma peça chave da álgebra comutativa moderna. Focamos, em especial, nos chamados anéis de Gorenstein, caracterizados, entre os anéis de Cohen-Macaulay, como aqueles que são seu próprio módulo canônico. Explicitamos o funtor dualizante. Analisamos o comportamento do módulo canônico sob o processo de localização e completamento. Por fim, trabalhamos nas demonstrações dos teoremas de dualidade de Grothendieck
id UFPE_779439225fdefa773a74d1549a79f83e
oai_identifier_str oai:repositorio.ufpe.br:123456789/7558
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling Vinícius Santos Dória, AndréSimis, Aron 2014-06-12T18:33:33Z2014-06-12T18:33:33Z2007Vinícius Santos Dória, André; Simis, Aron. Dualidade local. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Matemática, Universidade Federal de Pernambuco, Recife, 2007.https://repositorio.ufpe.br/handle/123456789/7558ark:/64986/0013000005sbbEsta dissertação tem como objetivos um estudo detalhado do módulo canônico e do funtor dualizante para anéis de Cohen-Macaulay locais e as demonstrações dos teoremas de dualidade de Grothendieck. Iniciamos com o caso Artiniano e depois estendemos ao caso geral. Analisamos a unicidade do funtor dualizante através da interveniência do módulo canônico, uma peça chave da álgebra comutativa moderna. Focamos, em especial, nos chamados anéis de Gorenstein, caracterizados, entre os anéis de Cohen-Macaulay, como aqueles que são seu próprio módulo canônico. Explicitamos o funtor dualizante. Analisamos o comportamento do módulo canônico sob o processo de localização e completamento. Por fim, trabalhamos nas demonstrações dos teoremas de dualidade de GrothendieckCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDualidade de GrothendieckHomologiaMódulo CanônicoDualidade localinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo8716_1.pdf.jpgarquivo8716_1.pdf.jpgGenerated Thumbnailimage/jpeg1231https://repositorio.ufpe.br/bitstream/123456789/7558/4/arquivo8716_1.pdf.jpg0e2afb80f74d41de560b729a0ac3bbdfMD54ORIGINALarquivo8716_1.pdfapplication/pdf394933https://repositorio.ufpe.br/bitstream/123456789/7558/1/arquivo8716_1.pdf01ca084378f3790faafdbe0837235749MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/7558/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo8716_1.pdf.txtarquivo8716_1.pdf.txtExtracted texttext/plain100357https://repositorio.ufpe.br/bitstream/123456789/7558/3/arquivo8716_1.pdf.txt193d398daa10d71461905bd6e6d4514eMD53123456789/75582019-10-25 14:37:22.322oai:repositorio.ufpe.br:123456789/7558Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T17:37:22Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Dualidade local
title Dualidade local
spellingShingle Dualidade local
Vinícius Santos Dória, André
Dualidade de Grothendieck
Homologia
Módulo Canônico
title_short Dualidade local
title_full Dualidade local
title_fullStr Dualidade local
title_full_unstemmed Dualidade local
title_sort Dualidade local
author Vinícius Santos Dória, André
author_facet Vinícius Santos Dória, André
author_role author
dc.contributor.author.fl_str_mv Vinícius Santos Dória, André
dc.contributor.advisor1.fl_str_mv Simis, Aron
contributor_str_mv Simis, Aron
dc.subject.por.fl_str_mv Dualidade de Grothendieck
Homologia
Módulo Canônico
topic Dualidade de Grothendieck
Homologia
Módulo Canônico
description Esta dissertação tem como objetivos um estudo detalhado do módulo canônico e do funtor dualizante para anéis de Cohen-Macaulay locais e as demonstrações dos teoremas de dualidade de Grothendieck. Iniciamos com o caso Artiniano e depois estendemos ao caso geral. Analisamos a unicidade do funtor dualizante através da interveniência do módulo canônico, uma peça chave da álgebra comutativa moderna. Focamos, em especial, nos chamados anéis de Gorenstein, caracterizados, entre os anéis de Cohen-Macaulay, como aqueles que são seu próprio módulo canônico. Explicitamos o funtor dualizante. Analisamos o comportamento do módulo canônico sob o processo de localização e completamento. Por fim, trabalhamos nas demonstrações dos teoremas de dualidade de Grothendieck
publishDate 2007
dc.date.issued.fl_str_mv 2007
dc.date.accessioned.fl_str_mv 2014-06-12T18:33:33Z
dc.date.available.fl_str_mv 2014-06-12T18:33:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Vinícius Santos Dória, André; Simis, Aron. Dualidade local. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Matemática, Universidade Federal de Pernambuco, Recife, 2007.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/7558
dc.identifier.dark.fl_str_mv ark:/64986/0013000005sbb
identifier_str_mv Vinícius Santos Dória, André; Simis, Aron. Dualidade local. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Matemática, Universidade Federal de Pernambuco, Recife, 2007.
ark:/64986/0013000005sbb
url https://repositorio.ufpe.br/handle/123456789/7558
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/7558/4/arquivo8716_1.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/7558/1/arquivo8716_1.pdf
https://repositorio.ufpe.br/bitstream/123456789/7558/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/7558/3/arquivo8716_1.pdf.txt
bitstream.checksum.fl_str_mv 0e2afb80f74d41de560b729a0ac3bbdf
01ca084378f3790faafdbe0837235749
8a4605be74aa9ea9d79846c1fba20a33
193d398daa10d71461905bd6e6d4514e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172732810166272