Artificial neural network architecture selection in a quantum computer

Detalhes bibliográficos
Autor(a) principal: SILVA, Adenilton José da
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000j1g0
Texto Completo: https://repositorio.ufpe.br/handle/123456789/15011
Resumo: Miniaturisation of computers components is taking us from classical to quantum physics domain. Further reduction in computer components size eventually will lead to the development of computer systems whose components will be on such a small scale that quantum physics intrinsic properties must be taken into account. The expression quantum computation and a first formal model of a quantum computer were first employed in the eighties. With the discovery of a quantum algorithm for factoring exponentially faster than any known classical algorithm in 1997, quantum computing began to attract industry investments for the development of a quantum computer and the design of novel quantum algorithms. For instance, the development of learning algorithms for neural networks. Some artificial neural networks models can simulate an universal Turing machine, and together with learning capabilities have numerous applications in real life problems. One limitation of artificial neural networks is the lack of an efficient algorithm to determine its optimal architecture. The main objective of this work is to verify whether we can obtain some advantage with the use of quantum computation techniques in a neural network learning and architecture selection procedure. We propose a quantum neural network, named quantum perceptron over a field (QPF). QPF is a direct generalisation of a classical perceptron which addresses some drawbacks found in previous models for quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimises the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures and neural networks parameters in linear time over the number of examples in the training set. SAL is the first quantum learning algorithm to determine neural network architectures in linear time. This speedup is obtained by the use of quantum parallelism and a non linear quantum operator.
id UFPE_83e972fa19ccc4eb6979c745170c42c9
oai_identifier_str oai:repositorio.ufpe.br:123456789/15011
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling SILVA, Adenilton José dahttp://lattes.cnpq.br/0314035098884256http://lattes.cnpq.br/6321179168854922LUDERMIR, Teresa BernardaOLIVEIRA, Wilson Rosa de2016-01-27T17:25:47Z2016-01-27T17:25:47Z2015-06-26https://repositorio.ufpe.br/handle/123456789/15011ark:/64986/001300000j1g0Miniaturisation of computers components is taking us from classical to quantum physics domain. Further reduction in computer components size eventually will lead to the development of computer systems whose components will be on such a small scale that quantum physics intrinsic properties must be taken into account. The expression quantum computation and a first formal model of a quantum computer were first employed in the eighties. With the discovery of a quantum algorithm for factoring exponentially faster than any known classical algorithm in 1997, quantum computing began to attract industry investments for the development of a quantum computer and the design of novel quantum algorithms. For instance, the development of learning algorithms for neural networks. Some artificial neural networks models can simulate an universal Turing machine, and together with learning capabilities have numerous applications in real life problems. One limitation of artificial neural networks is the lack of an efficient algorithm to determine its optimal architecture. The main objective of this work is to verify whether we can obtain some advantage with the use of quantum computation techniques in a neural network learning and architecture selection procedure. We propose a quantum neural network, named quantum perceptron over a field (QPF). QPF is a direct generalisation of a classical perceptron which addresses some drawbacks found in previous models for quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimises the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures and neural networks parameters in linear time over the number of examples in the training set. SAL is the first quantum learning algorithm to determine neural network architectures in linear time. This speedup is obtained by the use of quantum parallelism and a non linear quantum operator.CNPqA miniaturização dos componentes dos computadores está nos levando dos domínios da física clássica aos domínios da física quântica. Futuras reduções nos componentes dos computadores eventualmente levará ao desenvolvimento de computadores cujos componentes estarão em uma escala em que efeitos intrínsecos da física quântica deverão ser considerados. O termo computação quântica e um primeiro modelo formal de computação quântica foram definidos na década de 80. Com a descoberta no ano de 1997 de um algoritmo quântico para fatoração exponencialmente mais rápido do que qualquer algoritmo clássico conhecido a computação quântica passou a atrair investimentos de diversas empresas para a construção de um computador quântico e para o desenvolvimento de algoritmos quânticos. Por exemplo, o desenvolvimento de algoritmos de aprendizado para redes neurais. Alguns modelos de Redes Neurais Artificiais podem ser utilizados para simular uma máquina de Turing universal. Devido a sua capacidade de aprendizado, existem aplicações de redes neurais artificiais nas mais diversas áreas do conhecimento. Uma das limitações das redes neurais artificiais é a inexistência de um algoritmo com custo polinomial para determinar a melhor arquitetura de uma rede neural. Este trabalho tem como objetivo principal verificar se é possível obter alguma vantagem no uso da computação quântica no processo de seleção de arquiteturas de uma rede neural. Um modelo de rede neural quântica denominado perceptron quântico sobre um corpo foi proposto. O perceptron quântico sobre um corpo é uma generalização direta de um perceptron clássico que resolve algumas das limitações em modelos de redes neurais quânticas previamente propostos. Um algoritmo de aprendizado denominado algoritmo de aprendizado de arquitetura baseado no princípio da superposição que otimiza pesos e arquitetura de uma rede neural simultaneamente é apresentado. O algoritmo proposto possui custo linear e determina a melhor arquitetura em um conjunto finito de arquiteturas e os parâmetros da rede neural. O algoritmo de aprendizado proposto é o primeiro algoritmo quântico para determinar a arquitetura de uma rede neural com custo linear. O custo linear é obtido pelo uso do paralelismo quântico e de um operador quântico não linear.engUNIVERSIDADE FEDERAL DE PERNAMBUCOPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência artificialRedes neurais (Computação)Computação quânticaArtificial neural network architecture selection in a quantum computerinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILtese Adenilton José da Silva.pdf.jpgtese Adenilton José da Silva.pdf.jpgGenerated Thumbnailimage/jpeg1331https://repositorio.ufpe.br/bitstream/123456789/15011/5/tese%20Adenilton%20Jos%c3%a9%20da%20Silva.pdf.jpg3da72eac6c47748a71fcd027d17450e4MD55ORIGINALtese Adenilton José da Silva.pdftese Adenilton José da Silva.pdfapplication/pdf4885126https://repositorio.ufpe.br/bitstream/123456789/15011/1/tese%20Adenilton%20Jos%c3%a9%20da%20Silva.pdfd2bade12d15d6626962f244aebd5678dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/15011/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/15011/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTtese Adenilton José da Silva.pdf.txttese Adenilton José da Silva.pdf.txtExtracted texttext/plain235215https://repositorio.ufpe.br/bitstream/123456789/15011/4/tese%20Adenilton%20Jos%c3%a9%20da%20Silva.pdf.txt8e748e00b16c5e7247e7f2b88b5ca5d6MD54123456789/150112019-10-25 07:06:09.367oai:repositorio.ufpe.br:123456789/15011TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T10:06:09Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Artificial neural network architecture selection in a quantum computer
title Artificial neural network architecture selection in a quantum computer
spellingShingle Artificial neural network architecture selection in a quantum computer
SILVA, Adenilton José da
Inteligência artificial
Redes neurais (Computação)
Computação quântica
title_short Artificial neural network architecture selection in a quantum computer
title_full Artificial neural network architecture selection in a quantum computer
title_fullStr Artificial neural network architecture selection in a quantum computer
title_full_unstemmed Artificial neural network architecture selection in a quantum computer
title_sort Artificial neural network architecture selection in a quantum computer
author SILVA, Adenilton José da
author_facet SILVA, Adenilton José da
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0314035098884256
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6321179168854922
dc.contributor.author.fl_str_mv SILVA, Adenilton José da
dc.contributor.advisor1.fl_str_mv LUDERMIR, Teresa Bernarda
dc.contributor.advisor-co1.fl_str_mv OLIVEIRA, Wilson Rosa de
contributor_str_mv LUDERMIR, Teresa Bernarda
OLIVEIRA, Wilson Rosa de
dc.subject.por.fl_str_mv Inteligência artificial
Redes neurais (Computação)
Computação quântica
topic Inteligência artificial
Redes neurais (Computação)
Computação quântica
description Miniaturisation of computers components is taking us from classical to quantum physics domain. Further reduction in computer components size eventually will lead to the development of computer systems whose components will be on such a small scale that quantum physics intrinsic properties must be taken into account. The expression quantum computation and a first formal model of a quantum computer were first employed in the eighties. With the discovery of a quantum algorithm for factoring exponentially faster than any known classical algorithm in 1997, quantum computing began to attract industry investments for the development of a quantum computer and the design of novel quantum algorithms. For instance, the development of learning algorithms for neural networks. Some artificial neural networks models can simulate an universal Turing machine, and together with learning capabilities have numerous applications in real life problems. One limitation of artificial neural networks is the lack of an efficient algorithm to determine its optimal architecture. The main objective of this work is to verify whether we can obtain some advantage with the use of quantum computation techniques in a neural network learning and architecture selection procedure. We propose a quantum neural network, named quantum perceptron over a field (QPF). QPF is a direct generalisation of a classical perceptron which addresses some drawbacks found in previous models for quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimises the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures and neural networks parameters in linear time over the number of examples in the training set. SAL is the first quantum learning algorithm to determine neural network architectures in linear time. This speedup is obtained by the use of quantum parallelism and a non linear quantum operator.
publishDate 2015
dc.date.issued.fl_str_mv 2015-06-26
dc.date.accessioned.fl_str_mv 2016-01-27T17:25:47Z
dc.date.available.fl_str_mv 2016-01-27T17:25:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/15011
dc.identifier.dark.fl_str_mv ark:/64986/001300000j1g0
url https://repositorio.ufpe.br/handle/123456789/15011
identifier_str_mv ark:/64986/001300000j1g0
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv UNIVERSIDADE FEDERAL DE PERNAMBUCO
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv UNIVERSIDADE FEDERAL DE PERNAMBUCO
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/15011/5/tese%20Adenilton%20Jos%c3%a9%20da%20Silva.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/15011/1/tese%20Adenilton%20Jos%c3%a9%20da%20Silva.pdf
https://repositorio.ufpe.br/bitstream/123456789/15011/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/15011/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/15011/4/tese%20Adenilton%20Jos%c3%a9%20da%20Silva.pdf.txt
bitstream.checksum.fl_str_mv 3da72eac6c47748a71fcd027d17450e4
d2bade12d15d6626962f244aebd5678d
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
8e748e00b16c5e7247e7f2b88b5ca5d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172833353924608