Artificial neural network architecture selection in a quantum computer
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000j1g0 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/15011 |
Resumo: | Miniaturisation of computers components is taking us from classical to quantum physics domain. Further reduction in computer components size eventually will lead to the development of computer systems whose components will be on such a small scale that quantum physics intrinsic properties must be taken into account. The expression quantum computation and a first formal model of a quantum computer were first employed in the eighties. With the discovery of a quantum algorithm for factoring exponentially faster than any known classical algorithm in 1997, quantum computing began to attract industry investments for the development of a quantum computer and the design of novel quantum algorithms. For instance, the development of learning algorithms for neural networks. Some artificial neural networks models can simulate an universal Turing machine, and together with learning capabilities have numerous applications in real life problems. One limitation of artificial neural networks is the lack of an efficient algorithm to determine its optimal architecture. The main objective of this work is to verify whether we can obtain some advantage with the use of quantum computation techniques in a neural network learning and architecture selection procedure. We propose a quantum neural network, named quantum perceptron over a field (QPF). QPF is a direct generalisation of a classical perceptron which addresses some drawbacks found in previous models for quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimises the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures and neural networks parameters in linear time over the number of examples in the training set. SAL is the first quantum learning algorithm to determine neural network architectures in linear time. This speedup is obtained by the use of quantum parallelism and a non linear quantum operator. |
id |
UFPE_83e972fa19ccc4eb6979c745170c42c9 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/15011 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SILVA, Adenilton José dahttp://lattes.cnpq.br/0314035098884256http://lattes.cnpq.br/6321179168854922LUDERMIR, Teresa BernardaOLIVEIRA, Wilson Rosa de2016-01-27T17:25:47Z2016-01-27T17:25:47Z2015-06-26https://repositorio.ufpe.br/handle/123456789/15011ark:/64986/001300000j1g0Miniaturisation of computers components is taking us from classical to quantum physics domain. Further reduction in computer components size eventually will lead to the development of computer systems whose components will be on such a small scale that quantum physics intrinsic properties must be taken into account. The expression quantum computation and a first formal model of a quantum computer were first employed in the eighties. With the discovery of a quantum algorithm for factoring exponentially faster than any known classical algorithm in 1997, quantum computing began to attract industry investments for the development of a quantum computer and the design of novel quantum algorithms. For instance, the development of learning algorithms for neural networks. Some artificial neural networks models can simulate an universal Turing machine, and together with learning capabilities have numerous applications in real life problems. One limitation of artificial neural networks is the lack of an efficient algorithm to determine its optimal architecture. The main objective of this work is to verify whether we can obtain some advantage with the use of quantum computation techniques in a neural network learning and architecture selection procedure. We propose a quantum neural network, named quantum perceptron over a field (QPF). QPF is a direct generalisation of a classical perceptron which addresses some drawbacks found in previous models for quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimises the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures and neural networks parameters in linear time over the number of examples in the training set. SAL is the first quantum learning algorithm to determine neural network architectures in linear time. This speedup is obtained by the use of quantum parallelism and a non linear quantum operator.CNPqA miniaturização dos componentes dos computadores está nos levando dos domínios da física clássica aos domínios da física quântica. Futuras reduções nos componentes dos computadores eventualmente levará ao desenvolvimento de computadores cujos componentes estarão em uma escala em que efeitos intrínsecos da física quântica deverão ser considerados. O termo computação quântica e um primeiro modelo formal de computação quântica foram definidos na década de 80. Com a descoberta no ano de 1997 de um algoritmo quântico para fatoração exponencialmente mais rápido do que qualquer algoritmo clássico conhecido a computação quântica passou a atrair investimentos de diversas empresas para a construção de um computador quântico e para o desenvolvimento de algoritmos quânticos. Por exemplo, o desenvolvimento de algoritmos de aprendizado para redes neurais. Alguns modelos de Redes Neurais Artificiais podem ser utilizados para simular uma máquina de Turing universal. Devido a sua capacidade de aprendizado, existem aplicações de redes neurais artificiais nas mais diversas áreas do conhecimento. Uma das limitações das redes neurais artificiais é a inexistência de um algoritmo com custo polinomial para determinar a melhor arquitetura de uma rede neural. Este trabalho tem como objetivo principal verificar se é possível obter alguma vantagem no uso da computação quântica no processo de seleção de arquiteturas de uma rede neural. Um modelo de rede neural quântica denominado perceptron quântico sobre um corpo foi proposto. O perceptron quântico sobre um corpo é uma generalização direta de um perceptron clássico que resolve algumas das limitações em modelos de redes neurais quânticas previamente propostos. Um algoritmo de aprendizado denominado algoritmo de aprendizado de arquitetura baseado no princípio da superposição que otimiza pesos e arquitetura de uma rede neural simultaneamente é apresentado. O algoritmo proposto possui custo linear e determina a melhor arquitetura em um conjunto finito de arquiteturas e os parâmetros da rede neural. O algoritmo de aprendizado proposto é o primeiro algoritmo quântico para determinar a arquitetura de uma rede neural com custo linear. O custo linear é obtido pelo uso do paralelismo quântico e de um operador quântico não linear.engUNIVERSIDADE FEDERAL DE PERNAMBUCOPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência artificialRedes neurais (Computação)Computação quânticaArtificial neural network architecture selection in a quantum computerinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILtese Adenilton José da Silva.pdf.jpgtese Adenilton José da Silva.pdf.jpgGenerated Thumbnailimage/jpeg1331https://repositorio.ufpe.br/bitstream/123456789/15011/5/tese%20Adenilton%20Jos%c3%a9%20da%20Silva.pdf.jpg3da72eac6c47748a71fcd027d17450e4MD55ORIGINALtese Adenilton José da Silva.pdftese Adenilton José da Silva.pdfapplication/pdf4885126https://repositorio.ufpe.br/bitstream/123456789/15011/1/tese%20Adenilton%20Jos%c3%a9%20da%20Silva.pdfd2bade12d15d6626962f244aebd5678dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/15011/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/15011/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTtese Adenilton José da Silva.pdf.txttese Adenilton José da Silva.pdf.txtExtracted texttext/plain235215https://repositorio.ufpe.br/bitstream/123456789/15011/4/tese%20Adenilton%20Jos%c3%a9%20da%20Silva.pdf.txt8e748e00b16c5e7247e7f2b88b5ca5d6MD54123456789/150112019-10-25 07:06:09.367oai:repositorio.ufpe.br:123456789/15011TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T10:06:09Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Artificial neural network architecture selection in a quantum computer |
title |
Artificial neural network architecture selection in a quantum computer |
spellingShingle |
Artificial neural network architecture selection in a quantum computer SILVA, Adenilton José da Inteligência artificial Redes neurais (Computação) Computação quântica |
title_short |
Artificial neural network architecture selection in a quantum computer |
title_full |
Artificial neural network architecture selection in a quantum computer |
title_fullStr |
Artificial neural network architecture selection in a quantum computer |
title_full_unstemmed |
Artificial neural network architecture selection in a quantum computer |
title_sort |
Artificial neural network architecture selection in a quantum computer |
author |
SILVA, Adenilton José da |
author_facet |
SILVA, Adenilton José da |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/0314035098884256 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6321179168854922 |
dc.contributor.author.fl_str_mv |
SILVA, Adenilton José da |
dc.contributor.advisor1.fl_str_mv |
LUDERMIR, Teresa Bernarda |
dc.contributor.advisor-co1.fl_str_mv |
OLIVEIRA, Wilson Rosa de |
contributor_str_mv |
LUDERMIR, Teresa Bernarda OLIVEIRA, Wilson Rosa de |
dc.subject.por.fl_str_mv |
Inteligência artificial Redes neurais (Computação) Computação quântica |
topic |
Inteligência artificial Redes neurais (Computação) Computação quântica |
description |
Miniaturisation of computers components is taking us from classical to quantum physics domain. Further reduction in computer components size eventually will lead to the development of computer systems whose components will be on such a small scale that quantum physics intrinsic properties must be taken into account. The expression quantum computation and a first formal model of a quantum computer were first employed in the eighties. With the discovery of a quantum algorithm for factoring exponentially faster than any known classical algorithm in 1997, quantum computing began to attract industry investments for the development of a quantum computer and the design of novel quantum algorithms. For instance, the development of learning algorithms for neural networks. Some artificial neural networks models can simulate an universal Turing machine, and together with learning capabilities have numerous applications in real life problems. One limitation of artificial neural networks is the lack of an efficient algorithm to determine its optimal architecture. The main objective of this work is to verify whether we can obtain some advantage with the use of quantum computation techniques in a neural network learning and architecture selection procedure. We propose a quantum neural network, named quantum perceptron over a field (QPF). QPF is a direct generalisation of a classical perceptron which addresses some drawbacks found in previous models for quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimises the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures and neural networks parameters in linear time over the number of examples in the training set. SAL is the first quantum learning algorithm to determine neural network architectures in linear time. This speedup is obtained by the use of quantum parallelism and a non linear quantum operator. |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015-06-26 |
dc.date.accessioned.fl_str_mv |
2016-01-27T17:25:47Z |
dc.date.available.fl_str_mv |
2016-01-27T17:25:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/15011 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000j1g0 |
url |
https://repositorio.ufpe.br/handle/123456789/15011 |
identifier_str_mv |
ark:/64986/001300000j1g0 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
UNIVERSIDADE FEDERAL DE PERNAMBUCO |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
UNIVERSIDADE FEDERAL DE PERNAMBUCO |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/15011/5/tese%20Adenilton%20Jos%c3%a9%20da%20Silva.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/15011/1/tese%20Adenilton%20Jos%c3%a9%20da%20Silva.pdf https://repositorio.ufpe.br/bitstream/123456789/15011/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/15011/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/15011/4/tese%20Adenilton%20Jos%c3%a9%20da%20Silva.pdf.txt |
bitstream.checksum.fl_str_mv |
3da72eac6c47748a71fcd027d17450e4 d2bade12d15d6626962f244aebd5678d 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 8e748e00b16c5e7247e7f2b88b5ca5d6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172833353924608 |