Advances in quantum neural networks

Detalhes bibliográficos
Autor(a) principal: PAULA NETO, Fernando Maciano de
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000010r4s
Texto Completo: https://repositorio.ufpe.br/handle/123456789/32689
Resumo: Redes Neurais Artificiais (RNA) têm sido utilizadas como modelos computacionais que aprendem a partir de um conjunto de dados e são capazes de extrapolar esse conhecimento a partir das generalizações inerentes ao seu processo de decisão. Com o crescimento da computação quântica como novo paradigma de processamento de informação, modelos quânticos de redes neurais têm sido propostos para coadunar os benefícios da computação quântica com os benefícios das RNAs. Os modelos quânticos de RNA existentes assumem a dificuldade de implementar a não-linearidade intrínseca dos neurônios que compõem a RNA, uma vez que tradicionalmente a computação quântica possui apenas operadores unitários. Há algumas propostas na literatura de modelos de neurônios que simulam essa não-linearidade, mas elas aparecem simulando alguma função não-linear específica, como a função de limiar ou arco-tangente. Há ainda as RNAs que possuem comportamento de memória associativa, fazendo a recuperação de informação a partir de uma entrada igual ou parecida com seus padrões armazenados. A implementação desses modelos envolve duas etapas, o processo de armazenamento e a recuperação de informação. Os modelos quânticos de memória associativa têm utilizado a superposição quântica para armazenamento e alguns modelos foram propostos para recuperação de informação. Nesse trabalho estendemos o funcionamento não-linear do Perceptron, permitindo que um neurônio quântico execute qualquer função não-linear discreta. O modelo proposto permite que o neurônio possa simular o comportamento dos neurônios clássicos assim como utilizar dos recursos intrínsecos da computação quântica como superposição e emaranhamento. Há também a proposição de um neurônio que possui memória interna e que pode armazenar informações de iterações anteriores a medida que ele é executado. Esse modelo permite incorporar informações espaço-temporais em seu modelo. Em termos de memórias associativas, propusemos a utilização de dois modelos de recuperação probabilística de informação, um não linear e outro linear, utilizando os algoritmos quânticos de Grover e transformada inversa de Fourier. Esse modelo de memória permite reconhecer informações óximas ou iguais ao conteúdo que está na memória e possui custo linear de operação.
id UFPE_801132dcbe7e8815db1d30699c5b1ce8
oai_identifier_str oai:repositorio.ufpe.br:123456789/32689
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling PAULA NETO, Fernando Maciano dehttp://lattes.cnpq.br/9643216021359436http://lattes.cnpq.br/6321179168854922LUDERMIR, Teresa BernardaOLIVEIRA JUNIOR, Wilson Rosa de2019-09-12T18:39:17Z2019-09-12T18:39:17Z2018-11-23https://repositorio.ufpe.br/handle/123456789/32689ark:/64986/0013000010r4sRedes Neurais Artificiais (RNA) têm sido utilizadas como modelos computacionais que aprendem a partir de um conjunto de dados e são capazes de extrapolar esse conhecimento a partir das generalizações inerentes ao seu processo de decisão. Com o crescimento da computação quântica como novo paradigma de processamento de informação, modelos quânticos de redes neurais têm sido propostos para coadunar os benefícios da computação quântica com os benefícios das RNAs. Os modelos quânticos de RNA existentes assumem a dificuldade de implementar a não-linearidade intrínseca dos neurônios que compõem a RNA, uma vez que tradicionalmente a computação quântica possui apenas operadores unitários. Há algumas propostas na literatura de modelos de neurônios que simulam essa não-linearidade, mas elas aparecem simulando alguma função não-linear específica, como a função de limiar ou arco-tangente. Há ainda as RNAs que possuem comportamento de memória associativa, fazendo a recuperação de informação a partir de uma entrada igual ou parecida com seus padrões armazenados. A implementação desses modelos envolve duas etapas, o processo de armazenamento e a recuperação de informação. Os modelos quânticos de memória associativa têm utilizado a superposição quântica para armazenamento e alguns modelos foram propostos para recuperação de informação. Nesse trabalho estendemos o funcionamento não-linear do Perceptron, permitindo que um neurônio quântico execute qualquer função não-linear discreta. O modelo proposto permite que o neurônio possa simular o comportamento dos neurônios clássicos assim como utilizar dos recursos intrínsecos da computação quântica como superposição e emaranhamento. Há também a proposição de um neurônio que possui memória interna e que pode armazenar informações de iterações anteriores a medida que ele é executado. Esse modelo permite incorporar informações espaço-temporais em seu modelo. Em termos de memórias associativas, propusemos a utilização de dois modelos de recuperação probabilística de informação, um não linear e outro linear, utilizando os algoritmos quânticos de Grover e transformada inversa de Fourier. Esse modelo de memória permite reconhecer informações óximas ou iguais ao conteúdo que está na memória e possui custo linear de operação.CNPqArtificial neural networks (ANNs) have been used as computational models that learn using a training dataset and are capable to generalise knowledge in their decision process. With the growing of quantum computing field, as new paradigm of information processing, quantum neural networks were proposed to join the benefits of quantum computing and benefits of ANNs. The quantum ANNs models have difficulty to implement the intrinsic non-linearity of neurons of ANNs since traditionally quantum operators are unitary. Some neuron proposed models in literature appear simulating some specific nonlinear function, as threshold or arctangent functions. There are RNA models which behaves as associative memories, doing recovering of information for a given input equal or similar with internal content of the memory. The implementation of these models involve two steps, the storing process and information recovering process. The quantum models of associative memories have used a quantum state in superposition to store the patterns in the memory and some models were proposed to recovery an information in the memory. In this work we extend the nonlinear operation of Perceptron, allowing that the quantum neuron executes any nonlinear discrete function. There is also the proposition of quantum neuron with internal memory being capable to save previous iterations of its execution.In terms of associative memories, we propose two models of information recovery, one nonlinear and other linear, using the algorithms of Grover and inverse of Fourier transform.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência artificialComputação quânticaRedes neurais quânticasAdvances in quantum neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Fernando Maciano de Paula Neto.pdf.jpgTESE Fernando Maciano de Paula Neto.pdf.jpgGenerated Thumbnailimage/jpeg1224https://repositorio.ufpe.br/bitstream/123456789/32689/5/TESE%20%20Fernando%20Maciano%20de%20Paula%20Neto.pdf.jpg575754e2c0b664a41f41ecb1526f7ca8MD55ORIGINALTESE Fernando Maciano de Paula Neto.pdfTESE Fernando Maciano de Paula Neto.pdfapplication/pdf5865311https://repositorio.ufpe.br/bitstream/123456789/32689/1/TESE%20%20Fernando%20Maciano%20de%20Paula%20Neto.pdfd0bcec6e846ab0664002055f48b5a54cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/32689/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/32689/3/license.txtbd573a5ca8288eb7272482765f819534MD53TEXTTESE Fernando Maciano de Paula Neto.pdf.txtTESE Fernando Maciano de Paula Neto.pdf.txtExtracted texttext/plain336055https://repositorio.ufpe.br/bitstream/123456789/32689/4/TESE%20%20Fernando%20Maciano%20de%20Paula%20Neto.pdf.txt8fe87a03cdf568281d2a20db97e69973MD54123456789/326892019-10-26 04:09:36.44oai:repositorio.ufpe.br:123456789/32689TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T07:09:36Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Advances in quantum neural networks
title Advances in quantum neural networks
spellingShingle Advances in quantum neural networks
PAULA NETO, Fernando Maciano de
Inteligência artificial
Computação quântica
Redes neurais quânticas
title_short Advances in quantum neural networks
title_full Advances in quantum neural networks
title_fullStr Advances in quantum neural networks
title_full_unstemmed Advances in quantum neural networks
title_sort Advances in quantum neural networks
author PAULA NETO, Fernando Maciano de
author_facet PAULA NETO, Fernando Maciano de
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9643216021359436
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6321179168854922
dc.contributor.author.fl_str_mv PAULA NETO, Fernando Maciano de
dc.contributor.advisor1.fl_str_mv LUDERMIR, Teresa Bernarda
dc.contributor.advisor-co1.fl_str_mv OLIVEIRA JUNIOR, Wilson Rosa de
contributor_str_mv LUDERMIR, Teresa Bernarda
OLIVEIRA JUNIOR, Wilson Rosa de
dc.subject.por.fl_str_mv Inteligência artificial
Computação quântica
Redes neurais quânticas
topic Inteligência artificial
Computação quântica
Redes neurais quânticas
description Redes Neurais Artificiais (RNA) têm sido utilizadas como modelos computacionais que aprendem a partir de um conjunto de dados e são capazes de extrapolar esse conhecimento a partir das generalizações inerentes ao seu processo de decisão. Com o crescimento da computação quântica como novo paradigma de processamento de informação, modelos quânticos de redes neurais têm sido propostos para coadunar os benefícios da computação quântica com os benefícios das RNAs. Os modelos quânticos de RNA existentes assumem a dificuldade de implementar a não-linearidade intrínseca dos neurônios que compõem a RNA, uma vez que tradicionalmente a computação quântica possui apenas operadores unitários. Há algumas propostas na literatura de modelos de neurônios que simulam essa não-linearidade, mas elas aparecem simulando alguma função não-linear específica, como a função de limiar ou arco-tangente. Há ainda as RNAs que possuem comportamento de memória associativa, fazendo a recuperação de informação a partir de uma entrada igual ou parecida com seus padrões armazenados. A implementação desses modelos envolve duas etapas, o processo de armazenamento e a recuperação de informação. Os modelos quânticos de memória associativa têm utilizado a superposição quântica para armazenamento e alguns modelos foram propostos para recuperação de informação. Nesse trabalho estendemos o funcionamento não-linear do Perceptron, permitindo que um neurônio quântico execute qualquer função não-linear discreta. O modelo proposto permite que o neurônio possa simular o comportamento dos neurônios clássicos assim como utilizar dos recursos intrínsecos da computação quântica como superposição e emaranhamento. Há também a proposição de um neurônio que possui memória interna e que pode armazenar informações de iterações anteriores a medida que ele é executado. Esse modelo permite incorporar informações espaço-temporais em seu modelo. Em termos de memórias associativas, propusemos a utilização de dois modelos de recuperação probabilística de informação, um não linear e outro linear, utilizando os algoritmos quânticos de Grover e transformada inversa de Fourier. Esse modelo de memória permite reconhecer informações óximas ou iguais ao conteúdo que está na memória e possui custo linear de operação.
publishDate 2018
dc.date.issued.fl_str_mv 2018-11-23
dc.date.accessioned.fl_str_mv 2019-09-12T18:39:17Z
dc.date.available.fl_str_mv 2019-09-12T18:39:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/32689
dc.identifier.dark.fl_str_mv ark:/64986/0013000010r4s
url https://repositorio.ufpe.br/handle/123456789/32689
identifier_str_mv ark:/64986/0013000010r4s
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/32689/5/TESE%20%20Fernando%20Maciano%20de%20Paula%20Neto.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/32689/1/TESE%20%20Fernando%20Maciano%20de%20Paula%20Neto.pdf
https://repositorio.ufpe.br/bitstream/123456789/32689/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/32689/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/32689/4/TESE%20%20Fernando%20Maciano%20de%20Paula%20Neto.pdf.txt
bitstream.checksum.fl_str_mv 575754e2c0b664a41f41ecb1526f7ca8
d0bcec6e846ab0664002055f48b5a54c
e39d27027a6cc9cb039ad269a5db8e34
bd573a5ca8288eb7272482765f819534
8fe87a03cdf568281d2a20db97e69973
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172965578309632