Dmbuilding: Uma metodologia para montagem de visões em bases de dados dirigidas a problemas de mineração de dados
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/00130000075d4 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/1559 |
Resumo: | Os avanços tecnológicos têm aumentado drasticamente a magnitude dos dados armazenados em diversos domínios de aplicação. Esta abundância de dados tem excedido a capacidade de análise humana. Como conseqüência, algumas informações valiosas escondidas nestes grandes volumes de dados não são descobertas. Este cenário impulsionou a criação de várias técnicas capazes de extrair conhecimento de grandes volumes de dados. Algumas dessas técnicas são resultantes do emergente campo de Descoberta de Conhecimento em Bases de Dados (Knowledge Discovery in Databases - KDD). O processo de KDD é composto de várias etapas. A etapa de preparação dos dados consome de 50% a 90% do tempo e esforço necessário para a realização de todo o processo. Quanto mais completa e consistente for a preparação, melhor será o resultado da mineração de dados. Uma forma de garantir a completude e a consistência dos dados é utilizar uma metodologia que aborde detalhadamente todas as atividades relacionadas à preparação dos dados. Muitas metodologias foram propostas para o desenvolvimento de projetos de KDD. Apesar da maioria citar o processo de preparação dos dados, poucas metodologias específicas para montagem de visão de dados têm sido propostas. Diante deste cenário, esta dissertação tem como objetivos investigar as metodologias para o desenvolvimento de projetos de KDD, enfatizando os aspectos relacionados à preparação dos dados, e como resultado da investigação, propor uma metodologia para montagem de visões em bases de dados dirigidas a problemas de Mineração de Dados. Esta metodologia engloba, de forma detalhada, todo processo de preparação dos dados, desde o entendimento do problema até a geração da base. A viabilidade prática da metodologia proposta, DMBuilding, é demonstrada através da realização de um estudo de caso que utiliza uma base de dados de um problema real de larga escala no domínio da análise de risco crédito. Os resultados ilustram os benefícios da metodologia, comprovando sua relevância para a montagem de visão em bases de dados |
id |
UFPE_8838cecdba514e2bdd7bfa532418b11e |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/1559 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
CARGNIN, DanielaVASCONCELOS, Germano Crispim2014-06-12T15:51:10Z2014-06-12T15:51:10Z2008-01-31Cargnin, Daniela; Crispim Vasconcelos, Germano. Dmbuilding: Uma metodologia para montagem de visões em bases de dados dirigidas a problemas de mineração de dados. 2008. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008.https://repositorio.ufpe.br/handle/123456789/1559ark:/64986/00130000075d4Os avanços tecnológicos têm aumentado drasticamente a magnitude dos dados armazenados em diversos domínios de aplicação. Esta abundância de dados tem excedido a capacidade de análise humana. Como conseqüência, algumas informações valiosas escondidas nestes grandes volumes de dados não são descobertas. Este cenário impulsionou a criação de várias técnicas capazes de extrair conhecimento de grandes volumes de dados. Algumas dessas técnicas são resultantes do emergente campo de Descoberta de Conhecimento em Bases de Dados (Knowledge Discovery in Databases - KDD). O processo de KDD é composto de várias etapas. A etapa de preparação dos dados consome de 50% a 90% do tempo e esforço necessário para a realização de todo o processo. Quanto mais completa e consistente for a preparação, melhor será o resultado da mineração de dados. Uma forma de garantir a completude e a consistência dos dados é utilizar uma metodologia que aborde detalhadamente todas as atividades relacionadas à preparação dos dados. Muitas metodologias foram propostas para o desenvolvimento de projetos de KDD. Apesar da maioria citar o processo de preparação dos dados, poucas metodologias específicas para montagem de visão de dados têm sido propostas. Diante deste cenário, esta dissertação tem como objetivos investigar as metodologias para o desenvolvimento de projetos de KDD, enfatizando os aspectos relacionados à preparação dos dados, e como resultado da investigação, propor uma metodologia para montagem de visões em bases de dados dirigidas a problemas de Mineração de Dados. Esta metodologia engloba, de forma detalhada, todo processo de preparação dos dados, desde o entendimento do problema até a geração da base. A viabilidade prática da metodologia proposta, DMBuilding, é demonstrada através da realização de um estudo de caso que utiliza uma base de dados de um problema real de larga escala no domínio da análise de risco crédito. Os resultados ilustram os benefícios da metodologia, comprovando sua relevância para a montagem de visão em bases de dadosporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDescoberta de conhecimento em base de dadosPreparação dos dadosMetodologia para o desenvolvimento de projetos de descoberta de conhecimento em base de dadosMetodologia para montagem de visãoAnálise de créditoDmbuilding: Uma metodologia para montagem de visões em bases de dados dirigidas a problemas de mineração de dadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDC1.pdf.jpgDC1.pdf.jpgGenerated Thumbnailimage/jpeg1377https://repositorio.ufpe.br/bitstream/123456789/1559/4/DC1.pdf.jpg598d0ebd984c75501c00db3809cabbb6MD54LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/1559/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALDC1.pdfDC1.pdfapplication/pdf2685198https://repositorio.ufpe.br/bitstream/123456789/1559/2/DC1.pdfd8e14de73fb7f3e30ca800169e22100fMD52TEXTDC1.pdf.txtDC1.pdf.txtExtracted texttext/plain318510https://repositorio.ufpe.br/bitstream/123456789/1559/3/DC1.pdf.txtdb47960466394908b7d862a07f13ffedMD53123456789/15592019-10-25 06:25:40.42oai:repositorio.ufpe.br:123456789/1559Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T09:25:40Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Dmbuilding: Uma metodologia para montagem de visões em bases de dados dirigidas a problemas de mineração de dados |
title |
Dmbuilding: Uma metodologia para montagem de visões em bases de dados dirigidas a problemas de mineração de dados |
spellingShingle |
Dmbuilding: Uma metodologia para montagem de visões em bases de dados dirigidas a problemas de mineração de dados CARGNIN, Daniela Descoberta de conhecimento em base de dados Preparação dos dados Metodologia para o desenvolvimento de projetos de descoberta de conhecimento em base de dados Metodologia para montagem de visão Análise de crédito |
title_short |
Dmbuilding: Uma metodologia para montagem de visões em bases de dados dirigidas a problemas de mineração de dados |
title_full |
Dmbuilding: Uma metodologia para montagem de visões em bases de dados dirigidas a problemas de mineração de dados |
title_fullStr |
Dmbuilding: Uma metodologia para montagem de visões em bases de dados dirigidas a problemas de mineração de dados |
title_full_unstemmed |
Dmbuilding: Uma metodologia para montagem de visões em bases de dados dirigidas a problemas de mineração de dados |
title_sort |
Dmbuilding: Uma metodologia para montagem de visões em bases de dados dirigidas a problemas de mineração de dados |
author |
CARGNIN, Daniela |
author_facet |
CARGNIN, Daniela |
author_role |
author |
dc.contributor.author.fl_str_mv |
CARGNIN, Daniela |
dc.contributor.advisor1.fl_str_mv |
VASCONCELOS, Germano Crispim |
contributor_str_mv |
VASCONCELOS, Germano Crispim |
dc.subject.por.fl_str_mv |
Descoberta de conhecimento em base de dados Preparação dos dados Metodologia para o desenvolvimento de projetos de descoberta de conhecimento em base de dados Metodologia para montagem de visão Análise de crédito |
topic |
Descoberta de conhecimento em base de dados Preparação dos dados Metodologia para o desenvolvimento de projetos de descoberta de conhecimento em base de dados Metodologia para montagem de visão Análise de crédito |
description |
Os avanços tecnológicos têm aumentado drasticamente a magnitude dos dados armazenados em diversos domínios de aplicação. Esta abundância de dados tem excedido a capacidade de análise humana. Como conseqüência, algumas informações valiosas escondidas nestes grandes volumes de dados não são descobertas. Este cenário impulsionou a criação de várias técnicas capazes de extrair conhecimento de grandes volumes de dados. Algumas dessas técnicas são resultantes do emergente campo de Descoberta de Conhecimento em Bases de Dados (Knowledge Discovery in Databases - KDD). O processo de KDD é composto de várias etapas. A etapa de preparação dos dados consome de 50% a 90% do tempo e esforço necessário para a realização de todo o processo. Quanto mais completa e consistente for a preparação, melhor será o resultado da mineração de dados. Uma forma de garantir a completude e a consistência dos dados é utilizar uma metodologia que aborde detalhadamente todas as atividades relacionadas à preparação dos dados. Muitas metodologias foram propostas para o desenvolvimento de projetos de KDD. Apesar da maioria citar o processo de preparação dos dados, poucas metodologias específicas para montagem de visão de dados têm sido propostas. Diante deste cenário, esta dissertação tem como objetivos investigar as metodologias para o desenvolvimento de projetos de KDD, enfatizando os aspectos relacionados à preparação dos dados, e como resultado da investigação, propor uma metodologia para montagem de visões em bases de dados dirigidas a problemas de Mineração de Dados. Esta metodologia engloba, de forma detalhada, todo processo de preparação dos dados, desde o entendimento do problema até a geração da base. A viabilidade prática da metodologia proposta, DMBuilding, é demonstrada através da realização de um estudo de caso que utiliza uma base de dados de um problema real de larga escala no domínio da análise de risco crédito. Os resultados ilustram os benefícios da metodologia, comprovando sua relevância para a montagem de visão em bases de dados |
publishDate |
2008 |
dc.date.issued.fl_str_mv |
2008-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T15:51:10Z |
dc.date.available.fl_str_mv |
2014-06-12T15:51:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Cargnin, Daniela; Crispim Vasconcelos, Germano. Dmbuilding: Uma metodologia para montagem de visões em bases de dados dirigidas a problemas de mineração de dados. 2008. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/1559 |
dc.identifier.dark.fl_str_mv |
ark:/64986/00130000075d4 |
identifier_str_mv |
Cargnin, Daniela; Crispim Vasconcelos, Germano. Dmbuilding: Uma metodologia para montagem de visões em bases de dados dirigidas a problemas de mineração de dados. 2008. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008. ark:/64986/00130000075d4 |
url |
https://repositorio.ufpe.br/handle/123456789/1559 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/1559/4/DC1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/1559/1/license.txt https://repositorio.ufpe.br/bitstream/123456789/1559/2/DC1.pdf https://repositorio.ufpe.br/bitstream/123456789/1559/3/DC1.pdf.txt |
bitstream.checksum.fl_str_mv |
598d0ebd984c75501c00db3809cabbb6 8a4605be74aa9ea9d79846c1fba20a33 d8e14de73fb7f3e30ca800169e22100f db47960466394908b7d862a07f13ffed |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172746587406336 |