Optimization of prismatic moon pool configuration by operability criteria

Detalhes bibliográficos
Autor(a) principal: MICHIMA, Paula Suemy Arruda
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
Texto Completo: https://repositorio.ufpe.br/handle/123456789/28383
Resumo: A moon pool is an opening inside the hull of a floating system that allows access to the sea isolated from horizontal environmental forces. Despite those benefits, some disadvantages may occur when a resonant response to waves happens. Exaggerated oscillations might cause poor operation conditions or interruption of drilling procedures. The aim of this work is to, given a hull, find an optimal moon pool configuration that would result in the best stationary operation conditions for a typical sea state of the operation region. The proposal restricts it to be prismatic, free of appendages, recess, or any solution other than adequate contour shape. A drill ship is chosen as an example, but the method suits for floating systems in short and long term operation, granted that the response spectra can be calculated. Through an altered genetic algorithm applied to the set of parameters that define the shape and dimensions of the moon pool border, the optimum shape is searched based on hull and internal water response to wave excitation in various incidence angles and significant wave periods. A detailed development of the potential model used to describe the ship and free surface motions is presented, proposing a Rayleigh damping term and a boundary condition at the free surface inside the moon pool. The derivation of a set of formulae to transform into threshold significant wave height the acceptable limit values of each criterion: free surface height, ship motion, hull structure strength and positioning in azimuthal plane are also shown to determine a grade of fitness based on resultant operable conditions. Although there still are spaces for improvement of the resultant parameters’ values due to computational limitations, transversal dimensions and border shape parameters have converged, and the small variation of longitudinal dimensions is limited by order of length and Length/Breadth ratio values range of the moon pool. It was found possible to define, from user input: hull geometry and limit values for operability, what is the optimum prismatic moon pool configuration, which can be very different from the standard rectangle. Further, once the results of optimization are obtained, still in design stage, it is possible to identify characteristics of the system (or ship) that would improve operability. The output of the optimization program provides a visualization file of the mesh of the hull with optimum moon pool, and a radar chart with the operable zone of a given sea state. The latter can be used for quick decision making upon interruption of procedures during operation. In terms of construction complexity the moon pool shape doesn’t seem to present any limitations, since it is prismatic. A bow or stern shape is much more complex than the moon pool, and from mesh definition it is composed of only flat plates, demanding no extra work in plate conformation.
id UFPE_97a2ac666c8a2a8f7f7df866f828d5df
oai_identifier_str oai:repositorio.ufpe.br:123456789/28383
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling MICHIMA, Paula Suemy Arrudahttp://lattes.cnpq.br/3434875455344412http://lattes.cnpq.br/0107672521253580PRIMO, Ana Rosa MendesKAWABE, Hiroshi2019-01-03T12:27:29Z2019-01-03T12:27:29Z2017-10-20https://repositorio.ufpe.br/handle/123456789/28383A moon pool is an opening inside the hull of a floating system that allows access to the sea isolated from horizontal environmental forces. Despite those benefits, some disadvantages may occur when a resonant response to waves happens. Exaggerated oscillations might cause poor operation conditions or interruption of drilling procedures. The aim of this work is to, given a hull, find an optimal moon pool configuration that would result in the best stationary operation conditions for a typical sea state of the operation region. The proposal restricts it to be prismatic, free of appendages, recess, or any solution other than adequate contour shape. A drill ship is chosen as an example, but the method suits for floating systems in short and long term operation, granted that the response spectra can be calculated. Through an altered genetic algorithm applied to the set of parameters that define the shape and dimensions of the moon pool border, the optimum shape is searched based on hull and internal water response to wave excitation in various incidence angles and significant wave periods. A detailed development of the potential model used to describe the ship and free surface motions is presented, proposing a Rayleigh damping term and a boundary condition at the free surface inside the moon pool. The derivation of a set of formulae to transform into threshold significant wave height the acceptable limit values of each criterion: free surface height, ship motion, hull structure strength and positioning in azimuthal plane are also shown to determine a grade of fitness based on resultant operable conditions. Although there still are spaces for improvement of the resultant parameters’ values due to computational limitations, transversal dimensions and border shape parameters have converged, and the small variation of longitudinal dimensions is limited by order of length and Length/Breadth ratio values range of the moon pool. It was found possible to define, from user input: hull geometry and limit values for operability, what is the optimum prismatic moon pool configuration, which can be very different from the standard rectangle. Further, once the results of optimization are obtained, still in design stage, it is possible to identify characteristics of the system (or ship) that would improve operability. The output of the optimization program provides a visualization file of the mesh of the hull with optimum moon pool, and a radar chart with the operable zone of a given sea state. The latter can be used for quick decision making upon interruption of procedures during operation. In terms of construction complexity the moon pool shape doesn’t seem to present any limitations, since it is prismatic. A bow or stern shape is much more complex than the moon pool, and from mesh definition it is composed of only flat plates, demanding no extra work in plate conformation.Um moon pool é uma abertura no casco de um sistema flutuante que permite o acesso ao mar isolado das forças horizontais provindas do ambiente. Apesar desse benefício, algumas desvantagens podem existir quando a resposta à excitação de ondas é ressonante. Oscilações exageradas podem provocar baixas condições de operação ou interrupção dos procedimentos de perfuração. O objetivo deste trabalho é, dado um casco, encontrar a configuração ótima do moon pool que resultará nas melhores condições de operação estacionária para um estado de mar típico da região de operação. A proposta restringe-o a ser prismático, livre de apêndices, recessos, ou qualquer outra solução que não seja o formato de sua borda. Um navio-sonda de perfuração (drill ship) foi escolhido como exemplo, mas o método se aplica a sistemas flutuantes em operação de curto e longo prazo, se os espectros de resposta puderem ser calculados. Utilizando um algoritmo genético alterado aplicado aos parâmetros que definem a forma e dimensões de seu contorno, a configuração ótima do moon pool é buscada para o casco, dada a resposta à excitação de ondas em vários ângulos de incidência e períodos significativos de onda. O modelo potencial usado para descrever os movimentos do navio e da superfície livre do moon pool é apresentada, com a proposta do termo de amortecimento de Rayleigh e a condição de contorno correspondente. A dedução das fórmulas para converter as informações de valores dos limites aceitáveis para cada critério (altura da superfície livre do moon pool, resposta do navio, resistência estrutural do casco e manutenção do posicionamento) é apresentada. As formulas definem a adequação do moon pool para as condições de operação resultantes. Embora haja pontos a serem melhorados nos valores dos parâmetros resultantes (devidos à limitação computacional), as dimensões transversais e parâmetros de forma convergiram, e a pequena variação nas dimensões longitudinais é limitada pela ordem de grandeza do comprimento e faixa de valores da razão de Comprimento/Boca do moon pool. Concluiu-se que é possível definir, a partir de dados de entrada do usuário: geometria do casco e valores limites para operabilidade, qual é a configuração ótima de moon pool prismático, que pode ser bastante diferente do retângulo convencional. Além disso, uma vez obtidos os resultados da otimização, ainda no estágio de projeto, é possível identificar características do sistema (ou navio) que podem melhorar a operabilidade se alterados de forma conveniente. Juntamente com os valores resultantes dos parâmetros de dimensões e forma, são fornecidos também a malha do casco com o moon pool ótimo integrado e um gráfico de radar com a zona operável em um dado estado de mar, que pode ser usado para tomadas rápidas de decisão sobre a interrupção das operações em curso. Em termos de complexidade construtiva, a forma do moon pool não pareceengUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia MecanicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEngenharia MecânicaDrill shipNavio-sonda de perfuraçãoMoon poolOtimizaçãoOperabilidadeAlgoritmo genéticoOptimization of prismatic moon pool configuration by operability criteriainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Paula Suemy Arruda Michima.pdf.jpgTESE Paula Suemy Arruda Michima.pdf.jpgGenerated Thumbnailimage/jpeg1305https://repositorio.ufpe.br/bitstream/123456789/28383/6/TESE%20Paula%20Suemy%20Arruda%20Michima.pdf.jpg8f705334b8461207523fca717de3bd98MD56ORIGINALTESE Paula Suemy Arruda Michima.pdfTESE Paula Suemy Arruda Michima.pdfapplication/pdf9995433https://repositorio.ufpe.br/bitstream/123456789/28383/1/TESE%20Paula%20Suemy%20Arruda%20Michima.pdf840b27a0f3a5cd7b9f973c25c1198181MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/28383/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/28383/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTTESE Paula Suemy Arruda Michima.pdf.txtTESE Paula Suemy Arruda Michima.pdf.txtExtracted texttext/plain407135https://repositorio.ufpe.br/bitstream/123456789/28383/5/TESE%20Paula%20Suemy%20Arruda%20Michima.pdf.txte2c6c3bafb8e3ee30034723812b87fa6MD55123456789/283832019-10-26 02:36:05.249oai:repositorio.ufpe.br:123456789/28383TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T05:36:05Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Optimization of prismatic moon pool configuration by operability criteria
title Optimization of prismatic moon pool configuration by operability criteria
spellingShingle Optimization of prismatic moon pool configuration by operability criteria
MICHIMA, Paula Suemy Arruda
Engenharia Mecânica
Drill ship
Navio-sonda de perfuração
Moon pool
Otimização
Operabilidade
Algoritmo genético
title_short Optimization of prismatic moon pool configuration by operability criteria
title_full Optimization of prismatic moon pool configuration by operability criteria
title_fullStr Optimization of prismatic moon pool configuration by operability criteria
title_full_unstemmed Optimization of prismatic moon pool configuration by operability criteria
title_sort Optimization of prismatic moon pool configuration by operability criteria
author MICHIMA, Paula Suemy Arruda
author_facet MICHIMA, Paula Suemy Arruda
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3434875455344412
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0107672521253580
dc.contributor.author.fl_str_mv MICHIMA, Paula Suemy Arruda
dc.contributor.advisor1.fl_str_mv PRIMO, Ana Rosa Mendes
dc.contributor.advisor-co1.fl_str_mv KAWABE, Hiroshi
contributor_str_mv PRIMO, Ana Rosa Mendes
KAWABE, Hiroshi
dc.subject.por.fl_str_mv Engenharia Mecânica
Drill ship
Navio-sonda de perfuração
Moon pool
Otimização
Operabilidade
Algoritmo genético
topic Engenharia Mecânica
Drill ship
Navio-sonda de perfuração
Moon pool
Otimização
Operabilidade
Algoritmo genético
description A moon pool is an opening inside the hull of a floating system that allows access to the sea isolated from horizontal environmental forces. Despite those benefits, some disadvantages may occur when a resonant response to waves happens. Exaggerated oscillations might cause poor operation conditions or interruption of drilling procedures. The aim of this work is to, given a hull, find an optimal moon pool configuration that would result in the best stationary operation conditions for a typical sea state of the operation region. The proposal restricts it to be prismatic, free of appendages, recess, or any solution other than adequate contour shape. A drill ship is chosen as an example, but the method suits for floating systems in short and long term operation, granted that the response spectra can be calculated. Through an altered genetic algorithm applied to the set of parameters that define the shape and dimensions of the moon pool border, the optimum shape is searched based on hull and internal water response to wave excitation in various incidence angles and significant wave periods. A detailed development of the potential model used to describe the ship and free surface motions is presented, proposing a Rayleigh damping term and a boundary condition at the free surface inside the moon pool. The derivation of a set of formulae to transform into threshold significant wave height the acceptable limit values of each criterion: free surface height, ship motion, hull structure strength and positioning in azimuthal plane are also shown to determine a grade of fitness based on resultant operable conditions. Although there still are spaces for improvement of the resultant parameters’ values due to computational limitations, transversal dimensions and border shape parameters have converged, and the small variation of longitudinal dimensions is limited by order of length and Length/Breadth ratio values range of the moon pool. It was found possible to define, from user input: hull geometry and limit values for operability, what is the optimum prismatic moon pool configuration, which can be very different from the standard rectangle. Further, once the results of optimization are obtained, still in design stage, it is possible to identify characteristics of the system (or ship) that would improve operability. The output of the optimization program provides a visualization file of the mesh of the hull with optimum moon pool, and a radar chart with the operable zone of a given sea state. The latter can be used for quick decision making upon interruption of procedures during operation. In terms of construction complexity the moon pool shape doesn’t seem to present any limitations, since it is prismatic. A bow or stern shape is much more complex than the moon pool, and from mesh definition it is composed of only flat plates, demanding no extra work in plate conformation.
publishDate 2017
dc.date.issued.fl_str_mv 2017-10-20
dc.date.accessioned.fl_str_mv 2019-01-03T12:27:29Z
dc.date.available.fl_str_mv 2019-01-03T12:27:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/28383
url https://repositorio.ufpe.br/handle/123456789/28383
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Engenharia Mecanica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/28383/6/TESE%20Paula%20Suemy%20Arruda%20Michima.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/28383/1/TESE%20Paula%20Suemy%20Arruda%20Michima.pdf
https://repositorio.ufpe.br/bitstream/123456789/28383/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/28383/4/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/28383/5/TESE%20Paula%20Suemy%20Arruda%20Michima.pdf.txt
bitstream.checksum.fl_str_mv 8f705334b8461207523fca717de3bd98
840b27a0f3a5cd7b9f973c25c1198181
4b8a02c7f2818eaf00dcf2260dd5eb08
e39d27027a6cc9cb039ad269a5db8e34
e2c6c3bafb8e3ee30034723812b87fa6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1802310891427856384