Rotinas computacionais para análise não linear geométrica de estruturas reticuladas

Detalhes bibliográficos
Autor(a) principal: CUNHA, Pedro Filipe de Luna
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000gst0
Texto Completo: https://repositorio.ufpe.br/handle/123456789/29625
Resumo: A análise linear e frequentemente utilizada para o calculo de esforços e deslocamentos a que as estruturas sao submetidas. Entretanto, quando elas se tornam esbeltas ou submetidas a grandes deslocamentos, a linearidade não representa um caminho real para determinação desses parâmetros. A análise não linear geométrica (NLG) surge como uma ferramenta eficaz no estudo dessas estruturas, pois considera os efeitos de grandes deslocamentos. Ao contrario da análise linear, o carregamento e aplicado em incrementos de carga, e utilizando um processo iterativo, as translações e rotações sao atualizados a cada iteração, para solução do sistema não linear, até que a convergência desejada seja obtida (geralmente em termos de equilíbrio de forcas ou deslocamentos). Para análise NLG utilizam-se diversas formulações para construção das equações governantes do problema, como por exemplo: Lagrangeana Total, Lagrangeana Atualizada e Co-rotacional. Neste estudo foram desenvolvidas rotinas computacionais em elementos finitos para treliças planas, treliças espaciais e pórtico planos, resolvidas através do processo iterativo de Newton-Raphson, com aplicação das formulações Co-rotacional e Lagrangeana Atualizada, para o estudo dos efeitos da nao linearidade geométrica. Exemplos clássicos foram resolvidos com as rotinas computacionais propostas e demonstraram excelentes resultados. Estas sao apresentadas em sua totalidade nos apêndices deste trabalho.
id UFPE_98aaa619a047dcd7362b8165c5ae6fe4
oai_identifier_str oai:repositorio.ufpe.br:123456789/29625
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling CUNHA, Pedro Filipe de Lunahttp://lattes.cnpq.br/9462602533909899http://lattes.cnpq.br/0171120821110850RIBEIRO, Paulo Marcelo Vieira2019-03-11T19:30:30Z2019-03-11T19:30:30Z2017-08-04https://repositorio.ufpe.br/handle/123456789/29625ark:/64986/001300000gst0A análise linear e frequentemente utilizada para o calculo de esforços e deslocamentos a que as estruturas sao submetidas. Entretanto, quando elas se tornam esbeltas ou submetidas a grandes deslocamentos, a linearidade não representa um caminho real para determinação desses parâmetros. A análise não linear geométrica (NLG) surge como uma ferramenta eficaz no estudo dessas estruturas, pois considera os efeitos de grandes deslocamentos. Ao contrario da análise linear, o carregamento e aplicado em incrementos de carga, e utilizando um processo iterativo, as translações e rotações sao atualizados a cada iteração, para solução do sistema não linear, até que a convergência desejada seja obtida (geralmente em termos de equilíbrio de forcas ou deslocamentos). Para análise NLG utilizam-se diversas formulações para construção das equações governantes do problema, como por exemplo: Lagrangeana Total, Lagrangeana Atualizada e Co-rotacional. Neste estudo foram desenvolvidas rotinas computacionais em elementos finitos para treliças planas, treliças espaciais e pórtico planos, resolvidas através do processo iterativo de Newton-Raphson, com aplicação das formulações Co-rotacional e Lagrangeana Atualizada, para o estudo dos efeitos da nao linearidade geométrica. Exemplos clássicos foram resolvidos com as rotinas computacionais propostas e demonstraram excelentes resultados. Estas sao apresentadas em sua totalidade nos apêndices deste trabalho.CNPqLinear analysis is usually applied in structures for evaluation of internal forces and displacements. However, when these structural members become slender or subjected to large displacements, linearity is not a realistic path to follow. The geometric nonlinear analysis (GNL) emerges as an effective solution to study these cases, since large displacements are computed in the formulations. Unlike the raditional linear analysis, load steps are defined and an iterative process is applied. Translations and rotations are updated at every iteration, for solution of the nonlinear system, until the desired tolerance is achieved (generally in terms of force or displacement equilibrium). For GNL analysis several formulations are used to construct the governing equations of the problem, as for example: Total Lagrangian, Updated Lagrangian and Co-rotational. In this study, computational routines were developed in finite elements for analyses of plane and space trusses, and plane frames. An iterative Newton-Raphson process was applied using the Corotational and Updated Lagrangian formulations as a basis for construction of geometric stiffness matrices. Classical examples were solved using the proposed routines and are in excellent agreement with reference results. These computer codes are fully presented in the appendices of this work.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia CivilUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEngenharia CivilNão linearidade geométricaMétodos dos elementos finitosRotinas computacionaisTreliçaPórticos planosLagrangeana atualizadaRotinas computacionais para análise não linear geométrica de estruturas reticuladasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Pedro Filipe de Luna Cunha.pdf.jpgDISSERTAÇÃO Pedro Filipe de Luna Cunha.pdf.jpgGenerated Thumbnailimage/jpeg1232https://repositorio.ufpe.br/bitstream/123456789/29625/5/DISSERTAC%cc%a7A%cc%83O%20Pedro%20Filipe%20de%20Luna%20Cunha.pdf.jpg4bb58d0a591d43b00016dc3f1283c7e2MD55ORIGINALDISSERTAÇÃO Pedro Filipe de Luna Cunha.pdfDISSERTAÇÃO Pedro Filipe de Luna Cunha.pdfapplication/pdf1675766https://repositorio.ufpe.br/bitstream/123456789/29625/1/DISSERTAC%cc%a7A%cc%83O%20Pedro%20Filipe%20de%20Luna%20Cunha.pdff3b557b699d42b7a4aa1dfb3c815e963MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/29625/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/29625/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDISSERTAÇÃO Pedro Filipe de Luna Cunha.pdf.txtDISSERTAÇÃO Pedro Filipe de Luna Cunha.pdf.txtExtracted texttext/plain206530https://repositorio.ufpe.br/bitstream/123456789/29625/4/DISSERTAC%cc%a7A%cc%83O%20Pedro%20Filipe%20de%20Luna%20Cunha.pdf.txt714e0acf4b600a3c1c63b2b1af36ceecMD54123456789/296252019-10-26 00:29:18.193oai:repositorio.ufpe.br:123456789/29625TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T03:29:18Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Rotinas computacionais para análise não linear geométrica de estruturas reticuladas
title Rotinas computacionais para análise não linear geométrica de estruturas reticuladas
spellingShingle Rotinas computacionais para análise não linear geométrica de estruturas reticuladas
CUNHA, Pedro Filipe de Luna
Engenharia Civil
Não linearidade geométrica
Métodos dos elementos finitos
Rotinas computacionais
Treliça
Pórticos planos
Lagrangeana atualizada
title_short Rotinas computacionais para análise não linear geométrica de estruturas reticuladas
title_full Rotinas computacionais para análise não linear geométrica de estruturas reticuladas
title_fullStr Rotinas computacionais para análise não linear geométrica de estruturas reticuladas
title_full_unstemmed Rotinas computacionais para análise não linear geométrica de estruturas reticuladas
title_sort Rotinas computacionais para análise não linear geométrica de estruturas reticuladas
author CUNHA, Pedro Filipe de Luna
author_facet CUNHA, Pedro Filipe de Luna
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9462602533909899
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0171120821110850
dc.contributor.author.fl_str_mv CUNHA, Pedro Filipe de Luna
dc.contributor.advisor1.fl_str_mv RIBEIRO, Paulo Marcelo Vieira
contributor_str_mv RIBEIRO, Paulo Marcelo Vieira
dc.subject.por.fl_str_mv Engenharia Civil
Não linearidade geométrica
Métodos dos elementos finitos
Rotinas computacionais
Treliça
Pórticos planos
Lagrangeana atualizada
topic Engenharia Civil
Não linearidade geométrica
Métodos dos elementos finitos
Rotinas computacionais
Treliça
Pórticos planos
Lagrangeana atualizada
description A análise linear e frequentemente utilizada para o calculo de esforços e deslocamentos a que as estruturas sao submetidas. Entretanto, quando elas se tornam esbeltas ou submetidas a grandes deslocamentos, a linearidade não representa um caminho real para determinação desses parâmetros. A análise não linear geométrica (NLG) surge como uma ferramenta eficaz no estudo dessas estruturas, pois considera os efeitos de grandes deslocamentos. Ao contrario da análise linear, o carregamento e aplicado em incrementos de carga, e utilizando um processo iterativo, as translações e rotações sao atualizados a cada iteração, para solução do sistema não linear, até que a convergência desejada seja obtida (geralmente em termos de equilíbrio de forcas ou deslocamentos). Para análise NLG utilizam-se diversas formulações para construção das equações governantes do problema, como por exemplo: Lagrangeana Total, Lagrangeana Atualizada e Co-rotacional. Neste estudo foram desenvolvidas rotinas computacionais em elementos finitos para treliças planas, treliças espaciais e pórtico planos, resolvidas através do processo iterativo de Newton-Raphson, com aplicação das formulações Co-rotacional e Lagrangeana Atualizada, para o estudo dos efeitos da nao linearidade geométrica. Exemplos clássicos foram resolvidos com as rotinas computacionais propostas e demonstraram excelentes resultados. Estas sao apresentadas em sua totalidade nos apêndices deste trabalho.
publishDate 2017
dc.date.issued.fl_str_mv 2017-08-04
dc.date.accessioned.fl_str_mv 2019-03-11T19:30:30Z
dc.date.available.fl_str_mv 2019-03-11T19:30:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/29625
dc.identifier.dark.fl_str_mv ark:/64986/001300000gst0
url https://repositorio.ufpe.br/handle/123456789/29625
identifier_str_mv ark:/64986/001300000gst0
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Engenharia Civil
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/29625/5/DISSERTAC%cc%a7A%cc%83O%20Pedro%20Filipe%20de%20Luna%20Cunha.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/29625/1/DISSERTAC%cc%a7A%cc%83O%20Pedro%20Filipe%20de%20Luna%20Cunha.pdf
https://repositorio.ufpe.br/bitstream/123456789/29625/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/29625/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/29625/4/DISSERTAC%cc%a7A%cc%83O%20Pedro%20Filipe%20de%20Luna%20Cunha.pdf.txt
bitstream.checksum.fl_str_mv 4bb58d0a591d43b00016dc3f1283c7e2
f3b557b699d42b7a4aa1dfb3c815e963
e39d27027a6cc9cb039ad269a5db8e34
4b8a02c7f2818eaf00dcf2260dd5eb08
714e0acf4b600a3c1c63b2b1af36ceec
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172821324660736