Controle e estabilização da equação Korteweg-de Vries em um domínio periódico

Detalhes bibliográficos
Autor(a) principal: ARAÚJO, Elthon Matheus
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000012bzr
Texto Completo: https://repositorio.ufpe.br/handle/123456789/32079
Resumo: Em [37], Russel e Zhang mostraram que a equação de Korteweg-de Vries (KdV) em um domínio periódico, a saber, no toro (T) com um controle interno é localmente exatamente controlável e localmente exponencialmente estabilizável quando o controle age apenas em um subconjunto arbitrário não vazio do T. Neste trabalho, mostramos que o sistema é de fato globalmente exatamente controlável e globalmente exponencialmente estabilizável. Para o caso linear, estes resultados são estabelecidos usando principalmente a teoria de semigrupos. Além disso, mostramos que o sistema linear circuito fechado é globalmente exponencialmente estabilizável com uma velocidade de decaimento arbitrariamente grande. Para o caso não linear, a estabilidade exponencial global é estabelecida com o auxílio de certas propriedades de propagação de compacidade e regularidade nos espaços de Bourgain para as soluções do sistema linear associado, que são inspiradas pelas estabelecidas por Laurent em [24] para a equação de Schrödinger. Por fim, através da lei de amortecimento de Slemrod, mostramos que o sistema não linear circuito fechado resultante é globalmente exponencialmente estabilizável com uma velocidade de decaimente arbitrariamente grande.
id UFPE_a2b5b76c9f4572fffb64c0bde833b3cf
oai_identifier_str oai:repositorio.ufpe.br:123456789/32079
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling ARAÚJO, Elthon Matheushttp://lattes.cnpq.br/7356361834343493http://lattes.cnpq.br/6438759947793346CAPISTRANO FILHO, Roberto de Almeida2019-08-30T20:20:32Z2019-08-30T20:20:32Z2018-07-19https://repositorio.ufpe.br/handle/123456789/32079ark:/64986/0013000012bzrEm [37], Russel e Zhang mostraram que a equação de Korteweg-de Vries (KdV) em um domínio periódico, a saber, no toro (T) com um controle interno é localmente exatamente controlável e localmente exponencialmente estabilizável quando o controle age apenas em um subconjunto arbitrário não vazio do T. Neste trabalho, mostramos que o sistema é de fato globalmente exatamente controlável e globalmente exponencialmente estabilizável. Para o caso linear, estes resultados são estabelecidos usando principalmente a teoria de semigrupos. Além disso, mostramos que o sistema linear circuito fechado é globalmente exponencialmente estabilizável com uma velocidade de decaimento arbitrariamente grande. Para o caso não linear, a estabilidade exponencial global é estabelecida com o auxílio de certas propriedades de propagação de compacidade e regularidade nos espaços de Bourgain para as soluções do sistema linear associado, que são inspiradas pelas estabelecidas por Laurent em [24] para a equação de Schrödinger. Por fim, através da lei de amortecimento de Slemrod, mostramos que o sistema não linear circuito fechado resultante é globalmente exponencialmente estabilizável com uma velocidade de decaimente arbitrariamente grande.CNPqIn [37], Russell and Zhang showed that the Korteweg-de Vries (KdV) equation posed on a periodic domain, namely, on the torus (T) with an internal control is locally exactly controllable and locally exponentially stabilizable when the control acts only on an arbitrary nonempty subdomain of T. In this work, we show that the system is in fact globally exactly controllable and globally exponentially stabilizable. For the linear case, these results are established by mostly using semigroup theory. Furthermore, we show that the closed-loop linear system is globally exponentially stabilizable with an arbitrarily large deacy rate. For the nonlinear case, the global exponential stabilizability is established with the aid of certain properties of propagation of compactness and regularity in Bourgain spaces for the solutions of the associated linear system, which are inspired by those established by Laurent in [24] for the Schrödinger equation. Lastly, with Slemrod’s feedback law, we show that the resulting closed-loop nonlinear system is globally exponentially stabilizable with an arbitrarily large decay rate.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessMatemáticaEstabilidadeControle e estabilização da equação Korteweg-de Vries em um domínio periódicoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Elthon Matheus Araújo.pdf.jpgDISSERTAÇÃO Elthon Matheus Araújo.pdf.jpgGenerated Thumbnailimage/jpeg1351https://repositorio.ufpe.br/bitstream/123456789/32079/5/DISSERTA%c3%87%c3%83O%20Elthon%20Matheus%20Ara%c3%bajo.pdf.jpg28e5da274edc62fc27ccf9ba7d26836fMD55ORIGINALDISSERTAÇÃO Elthon Matheus Araújo.pdfDISSERTAÇÃO Elthon Matheus Araújo.pdfapplication/pdf604481https://repositorio.ufpe.br/bitstream/123456789/32079/1/DISSERTA%c3%87%c3%83O%20Elthon%20Matheus%20Ara%c3%bajo.pdf58db0c1b2759d5612c7f5ba7def35e9aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/32079/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/32079/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDISSERTAÇÃO Elthon Matheus Araújo.pdf.txtDISSERTAÇÃO Elthon Matheus Araújo.pdf.txtExtracted texttext/plain139588https://repositorio.ufpe.br/bitstream/123456789/32079/4/DISSERTA%c3%87%c3%83O%20Elthon%20Matheus%20Ara%c3%bajo.pdf.txtd3b196f39d90d91bd51cbb3d1c689daaMD54123456789/320792019-10-25 10:41:11.103oai:repositorio.ufpe.br:123456789/32079TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T13:41:11Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Controle e estabilização da equação Korteweg-de Vries em um domínio periódico
title Controle e estabilização da equação Korteweg-de Vries em um domínio periódico
spellingShingle Controle e estabilização da equação Korteweg-de Vries em um domínio periódico
ARAÚJO, Elthon Matheus
Matemática
Estabilidade
title_short Controle e estabilização da equação Korteweg-de Vries em um domínio periódico
title_full Controle e estabilização da equação Korteweg-de Vries em um domínio periódico
title_fullStr Controle e estabilização da equação Korteweg-de Vries em um domínio periódico
title_full_unstemmed Controle e estabilização da equação Korteweg-de Vries em um domínio periódico
title_sort Controle e estabilização da equação Korteweg-de Vries em um domínio periódico
author ARAÚJO, Elthon Matheus
author_facet ARAÚJO, Elthon Matheus
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/7356361834343493
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6438759947793346
dc.contributor.author.fl_str_mv ARAÚJO, Elthon Matheus
dc.contributor.advisor1.fl_str_mv CAPISTRANO FILHO, Roberto de Almeida
contributor_str_mv CAPISTRANO FILHO, Roberto de Almeida
dc.subject.por.fl_str_mv Matemática
Estabilidade
topic Matemática
Estabilidade
description Em [37], Russel e Zhang mostraram que a equação de Korteweg-de Vries (KdV) em um domínio periódico, a saber, no toro (T) com um controle interno é localmente exatamente controlável e localmente exponencialmente estabilizável quando o controle age apenas em um subconjunto arbitrário não vazio do T. Neste trabalho, mostramos que o sistema é de fato globalmente exatamente controlável e globalmente exponencialmente estabilizável. Para o caso linear, estes resultados são estabelecidos usando principalmente a teoria de semigrupos. Além disso, mostramos que o sistema linear circuito fechado é globalmente exponencialmente estabilizável com uma velocidade de decaimento arbitrariamente grande. Para o caso não linear, a estabilidade exponencial global é estabelecida com o auxílio de certas propriedades de propagação de compacidade e regularidade nos espaços de Bourgain para as soluções do sistema linear associado, que são inspiradas pelas estabelecidas por Laurent em [24] para a equação de Schrödinger. Por fim, através da lei de amortecimento de Slemrod, mostramos que o sistema não linear circuito fechado resultante é globalmente exponencialmente estabilizável com uma velocidade de decaimente arbitrariamente grande.
publishDate 2018
dc.date.issued.fl_str_mv 2018-07-19
dc.date.accessioned.fl_str_mv 2019-08-30T20:20:32Z
dc.date.available.fl_str_mv 2019-08-30T20:20:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/32079
dc.identifier.dark.fl_str_mv ark:/64986/0013000012bzr
url https://repositorio.ufpe.br/handle/123456789/32079
identifier_str_mv ark:/64986/0013000012bzr
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Matematica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/32079/5/DISSERTA%c3%87%c3%83O%20Elthon%20Matheus%20Ara%c3%bajo.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/32079/1/DISSERTA%c3%87%c3%83O%20Elthon%20Matheus%20Ara%c3%bajo.pdf
https://repositorio.ufpe.br/bitstream/123456789/32079/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/32079/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/32079/4/DISSERTA%c3%87%c3%83O%20Elthon%20Matheus%20Ara%c3%bajo.pdf.txt
bitstream.checksum.fl_str_mv 28e5da274edc62fc27ccf9ba7d26836f
58db0c1b2759d5612c7f5ba7def35e9a
e39d27027a6cc9cb039ad269a5db8e34
4b8a02c7f2818eaf00dcf2260dd5eb08
d3b196f39d90d91bd51cbb3d1c689daa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172980323385344