Teoremas de Poincaré-Hopf, Gauss-Bonnet e Dehn-Sommerville em complexos simpliciais energizados
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/00130000059jv |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/38640 |
Resumo: | A geometria dos complexos simpliciais era muito pouco estudada antes do início da última década, porém, desde então, parece ter havido uma explosão dos trabalhos nesta área, com isso novas estruturas acabam surgindo com o desenvolvimento e as descobertas dentro do arcabouço desta geometria. Neste trabalho desenvolvemos a teoria dos complexos simpliciais energizados, uma estrutura derivada dos complexos simpliciais abstratos e que se comporta como uma generalização dos estudos topológicos dos mesmos. São apresentados além de uma introdução a nova estrutura, o estudo dos primeiros operadores energizados, o desenvolvimento das versões dos teoremas de Gauss-Bonnet e Poincaré-Hopf energizados, as relações de Denh-Sommerville energizadas e uma versão discreta do teorema de RiemanRoch. A tese ainda apresenta uma seleção de estratégias para desenvolver novos resultados dentro da estrutura dos complexos simpliciais energizados. Estes novos resultados para os quais são traçadas as estratégias podem ser categorizados em três frentes: O preenchimento da teoria, a expansão dos resultados para conjuntos de conjuntos e as aplicações na ciências de dados, biologia e medicina. |
id |
UFPE_a52cd583b88b979b2aea84b92605b024 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/38640 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
RICARDO, Cleiton de Limahttp://lattes.cnpq.br/6945271130997126http://lattes.cnpq.br/9100032882367430SANTOS, Fernando Antônio Nóbrega2020-11-13T14:54:36Z2020-11-13T14:54:36Z2020-01-31RICARDO, Cleiton de Lima. Teoremas de Poincaré-Hopf, Gauss-Bonnet e Dehn-Sommerville em complexos simpliciais energizados. 2020. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/38640ark:/64986/00130000059jvA geometria dos complexos simpliciais era muito pouco estudada antes do início da última década, porém, desde então, parece ter havido uma explosão dos trabalhos nesta área, com isso novas estruturas acabam surgindo com o desenvolvimento e as descobertas dentro do arcabouço desta geometria. Neste trabalho desenvolvemos a teoria dos complexos simpliciais energizados, uma estrutura derivada dos complexos simpliciais abstratos e que se comporta como uma generalização dos estudos topológicos dos mesmos. São apresentados além de uma introdução a nova estrutura, o estudo dos primeiros operadores energizados, o desenvolvimento das versões dos teoremas de Gauss-Bonnet e Poincaré-Hopf energizados, as relações de Denh-Sommerville energizadas e uma versão discreta do teorema de RiemanRoch. A tese ainda apresenta uma seleção de estratégias para desenvolver novos resultados dentro da estrutura dos complexos simpliciais energizados. Estes novos resultados para os quais são traçadas as estratégias podem ser categorizados em três frentes: O preenchimento da teoria, a expansão dos resultados para conjuntos de conjuntos e as aplicações na ciências de dados, biologia e medicina.The geometry of the simplicial complexes was under-investigated before the beginning of the last decade, but since then there seems to have been an explosion of work in this field. Therefore, new structures come to emerge with the development and discoveries within the framework of simplicial geometry. In this thesis, we push forward the development of the theory of energized simplicial complexes, a structure derived from abstract simplicial complexes that behaves as a generalization of their classical topological version. In addition to an introduction to this new structure, we studied the first energized operators, the development of the energized Gauss-Bonnet and Poincaré-Hopf theorems, the energized Denh-Sommerville relations, and a discrete version of the Rieman-Roch theorem. The thesis also presents a selection of strategies and pathways to develop further results within the structure of energized simplicial complexes. These new results for which the strategies are drawn can be categorized on three fronts: The completion of the theory, the expansion of the results to sets of sets and applications in data sciences, biology and medicine.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessGeometriaComplexos simpliciais energizadosTeoremas de Poincaré-Hopf, Gauss-Bonnet e Dehn-Sommerville em complexos simpliciais energizadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE Cleiton de Lima Ricardo.pdfTESE Cleiton de Lima Ricardo.pdfapplication/pdf1272824https://repositorio.ufpe.br/bitstream/123456789/38640/1/TESE%20Cleiton%20de%20Lima%20Ricardo.pdf71f4de5735ffd3a550adcb1fdcace930MD51TEXTTESE Cleiton de Lima Ricardo.pdf.txtTESE Cleiton de Lima Ricardo.pdf.txtExtracted texttext/plain120426https://repositorio.ufpe.br/bitstream/123456789/38640/4/TESE%20Cleiton%20de%20Lima%20Ricardo.pdf.txt438ac3f7687bbd7bd111d7b8592aa934MD54THUMBNAILTESE Cleiton de Lima Ricardo.pdf.jpgTESE Cleiton de Lima Ricardo.pdf.jpgGenerated Thumbnailimage/jpeg1232https://repositorio.ufpe.br/bitstream/123456789/38640/5/TESE%20Cleiton%20de%20Lima%20Ricardo.pdf.jpgbe75d92bb15445089847f8d1440a9c99MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/38640/3/license.txtbd573a5ca8288eb7272482765f819534MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/38640/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52123456789/386402020-11-14 02:14:18.569oai:repositorio.ufpe.br:123456789/38640TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-11-14T05:14:18Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Teoremas de Poincaré-Hopf, Gauss-Bonnet e Dehn-Sommerville em complexos simpliciais energizados |
title |
Teoremas de Poincaré-Hopf, Gauss-Bonnet e Dehn-Sommerville em complexos simpliciais energizados |
spellingShingle |
Teoremas de Poincaré-Hopf, Gauss-Bonnet e Dehn-Sommerville em complexos simpliciais energizados RICARDO, Cleiton de Lima Geometria Complexos simpliciais energizados |
title_short |
Teoremas de Poincaré-Hopf, Gauss-Bonnet e Dehn-Sommerville em complexos simpliciais energizados |
title_full |
Teoremas de Poincaré-Hopf, Gauss-Bonnet e Dehn-Sommerville em complexos simpliciais energizados |
title_fullStr |
Teoremas de Poincaré-Hopf, Gauss-Bonnet e Dehn-Sommerville em complexos simpliciais energizados |
title_full_unstemmed |
Teoremas de Poincaré-Hopf, Gauss-Bonnet e Dehn-Sommerville em complexos simpliciais energizados |
title_sort |
Teoremas de Poincaré-Hopf, Gauss-Bonnet e Dehn-Sommerville em complexos simpliciais energizados |
author |
RICARDO, Cleiton de Lima |
author_facet |
RICARDO, Cleiton de Lima |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6945271130997126 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9100032882367430 |
dc.contributor.author.fl_str_mv |
RICARDO, Cleiton de Lima |
dc.contributor.advisor1.fl_str_mv |
SANTOS, Fernando Antônio Nóbrega |
contributor_str_mv |
SANTOS, Fernando Antônio Nóbrega |
dc.subject.por.fl_str_mv |
Geometria Complexos simpliciais energizados |
topic |
Geometria Complexos simpliciais energizados |
description |
A geometria dos complexos simpliciais era muito pouco estudada antes do início da última década, porém, desde então, parece ter havido uma explosão dos trabalhos nesta área, com isso novas estruturas acabam surgindo com o desenvolvimento e as descobertas dentro do arcabouço desta geometria. Neste trabalho desenvolvemos a teoria dos complexos simpliciais energizados, uma estrutura derivada dos complexos simpliciais abstratos e que se comporta como uma generalização dos estudos topológicos dos mesmos. São apresentados além de uma introdução a nova estrutura, o estudo dos primeiros operadores energizados, o desenvolvimento das versões dos teoremas de Gauss-Bonnet e Poincaré-Hopf energizados, as relações de Denh-Sommerville energizadas e uma versão discreta do teorema de RiemanRoch. A tese ainda apresenta uma seleção de estratégias para desenvolver novos resultados dentro da estrutura dos complexos simpliciais energizados. Estes novos resultados para os quais são traçadas as estratégias podem ser categorizados em três frentes: O preenchimento da teoria, a expansão dos resultados para conjuntos de conjuntos e as aplicações na ciências de dados, biologia e medicina. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-11-13T14:54:36Z |
dc.date.available.fl_str_mv |
2020-11-13T14:54:36Z |
dc.date.issued.fl_str_mv |
2020-01-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
RICARDO, Cleiton de Lima. Teoremas de Poincaré-Hopf, Gauss-Bonnet e Dehn-Sommerville em complexos simpliciais energizados. 2020. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2020. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/38640 |
dc.identifier.dark.fl_str_mv |
ark:/64986/00130000059jv |
identifier_str_mv |
RICARDO, Cleiton de Lima. Teoremas de Poincaré-Hopf, Gauss-Bonnet e Dehn-Sommerville em complexos simpliciais energizados. 2020. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2020. ark:/64986/00130000059jv |
url |
https://repositorio.ufpe.br/handle/123456789/38640 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Matematica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/38640/1/TESE%20Cleiton%20de%20Lima%20Ricardo.pdf https://repositorio.ufpe.br/bitstream/123456789/38640/4/TESE%20Cleiton%20de%20Lima%20Ricardo.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/38640/5/TESE%20Cleiton%20de%20Lima%20Ricardo.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/38640/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/38640/2/license_rdf |
bitstream.checksum.fl_str_mv |
71f4de5735ffd3a550adcb1fdcace930 438ac3f7687bbd7bd111d7b8592aa934 be75d92bb15445089847f8d1440a9c99 bd573a5ca8288eb7272482765f819534 e39d27027a6cc9cb039ad269a5db8e34 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172728200626176 |