Crescimento Laplaciano em duas dimensões: uma abordagem através da equação de Loewner

Detalhes bibliográficos
Autor(a) principal: ROA, Miguel Angel Duran
Data de Publicação: 2010
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300001368j
Texto Completo: https://repositorio.ufpe.br/handle/123456789/6633
Resumo: Padrões complexos são frequentemente observados em diferentes fenômenos físicos, tais como, o movimento de uma interface entre dois fluidos não miscíveis, eletrodeposição, etc, onde a dinâmica da interface é controlada pelo gradiente de uma função potencial, a qual satisfaz a equação de Laplace. Recentemente, uma ferramenta importante da análise complexa, a equação de Loewner, tem sido utilizada para estudar problemas de crescimento laplaciano em duas dimensões. Em poucas palavras, a equação de Loewner é uma equação diferencial de primeira ordem para a evolução temporal da transformação conforme que leva o domínio físico , onde se dá o crescimento, em um domínio matemático que se asemelha ao domínio físico inicial (ou seja, aquele existente antes de começar o processo de crescimento). Nesta tese, primeiramente apresentamos uma dedução alternativa da equação de Loewner para dois casos considerados recentemente na literatura em que curvas simples crescem no semiplano superior ou na geometria do canal. Nosso método de obtenção da equação de Loewner é baseado na transformação de Schwarz-Christoffel entre os planos matemáticos em dois instantes de tempo infinitesimalmente próximos. Em seguida, estendemos o formalismo da equação de Loewner para estudar uma clase mais geral de problemas de crescimento, em que agora tem-se o avanço de uma interface envolvendo uma região de área crescente. Em nosso modelo de crescimento, a interface possui certos pontos especiais, chamados de cristas e vales, onde o fator de crescimento é um máximo e um mínimo local, respectivamente. A regra de crescimento do modelo é definida em termos de certas curvas poligonais que crescem no plano matemático. Para as duas geometrias de interesse, o semiplano superior e o canal, deduzimos a correspondente equação de Loewner que governa a dinâmica da interface. Vários exemplos de evolução temporal de interfaces são discutidos, tanto no caso em que se tem uma única interface, seja com uma ou várias cristas, quanto no caso de múltiplas interfaces crescendo simultaneamente. Em particular, o conhecido efeito de blindagem, onde uma das crista avança bem mais que as outras, é normalmente observado para o caso de interfaces não simétricas. Uma breve comparação qualitativa é feita entre nossos resultados e alguns padrões observados em experimento
id UFPE_a9ae2d170779cdee263dd2260a2f2807
oai_identifier_str oai:repositorio.ufpe.br:123456789/6633
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling ROA, Miguel Angel DuranVASCONCELOS, Giovani Lopes2014-06-12T18:06:31Z2014-06-12T18:06:31Z2010-01-31Angel Duran Roa, Miguel; Lopes Vasconcelos, Giovani. Crescimento Laplaciano em duas dimensões: uma abordagem através da equação de Loewner. 2010. Tese (Doutorado). Programa de Pós-Graduação em Física, Universidade Federal de Pernambuco, Recife, 2010.https://repositorio.ufpe.br/handle/123456789/6633ark:/64986/001300001368jPadrões complexos são frequentemente observados em diferentes fenômenos físicos, tais como, o movimento de uma interface entre dois fluidos não miscíveis, eletrodeposição, etc, onde a dinâmica da interface é controlada pelo gradiente de uma função potencial, a qual satisfaz a equação de Laplace. Recentemente, uma ferramenta importante da análise complexa, a equação de Loewner, tem sido utilizada para estudar problemas de crescimento laplaciano em duas dimensões. Em poucas palavras, a equação de Loewner é uma equação diferencial de primeira ordem para a evolução temporal da transformação conforme que leva o domínio físico , onde se dá o crescimento, em um domínio matemático que se asemelha ao domínio físico inicial (ou seja, aquele existente antes de começar o processo de crescimento). Nesta tese, primeiramente apresentamos uma dedução alternativa da equação de Loewner para dois casos considerados recentemente na literatura em que curvas simples crescem no semiplano superior ou na geometria do canal. Nosso método de obtenção da equação de Loewner é baseado na transformação de Schwarz-Christoffel entre os planos matemáticos em dois instantes de tempo infinitesimalmente próximos. Em seguida, estendemos o formalismo da equação de Loewner para estudar uma clase mais geral de problemas de crescimento, em que agora tem-se o avanço de uma interface envolvendo uma região de área crescente. Em nosso modelo de crescimento, a interface possui certos pontos especiais, chamados de cristas e vales, onde o fator de crescimento é um máximo e um mínimo local, respectivamente. A regra de crescimento do modelo é definida em termos de certas curvas poligonais que crescem no plano matemático. Para as duas geometrias de interesse, o semiplano superior e o canal, deduzimos a correspondente equação de Loewner que governa a dinâmica da interface. Vários exemplos de evolução temporal de interfaces são discutidos, tanto no caso em que se tem uma única interface, seja com uma ou várias cristas, quanto no caso de múltiplas interfaces crescendo simultaneamente. Em particular, o conhecido efeito de blindagem, onde uma das crista avança bem mais que as outras, é normalmente observado para o caso de interfaces não simétricas. Uma breve comparação qualitativa é feita entre nossos resultados e alguns padrões observados em experimentoUniversidade Federal de PernambucoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccesscrescimento laplacianoEquação de Loewnerdinâmica de interfacesformação de padrõesCrescimento Laplaciano em duas dimensões: uma abordagem através da equação de Loewnerinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo904_1.pdf.jpgarquivo904_1.pdf.jpgGenerated Thumbnailimage/jpeg1411https://repositorio.ufpe.br/bitstream/123456789/6633/4/arquivo904_1.pdf.jpge47f2dc3315e0aba99a59010e7ff1286MD54ORIGINALarquivo904_1.pdfapplication/pdf2034290https://repositorio.ufpe.br/bitstream/123456789/6633/1/arquivo904_1.pdf6c7a1aa3574036c31382491866de428aMD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/6633/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo904_1.pdf.txtarquivo904_1.pdf.txtExtracted texttext/plain247317https://repositorio.ufpe.br/bitstream/123456789/6633/3/arquivo904_1.pdf.txt45d1e758241807d889d2148648bb99bcMD53123456789/66332019-10-25 06:34:29.089oai:repositorio.ufpe.br:123456789/6633Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T09:34:29Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Crescimento Laplaciano em duas dimensões: uma abordagem através da equação de Loewner
title Crescimento Laplaciano em duas dimensões: uma abordagem através da equação de Loewner
spellingShingle Crescimento Laplaciano em duas dimensões: uma abordagem através da equação de Loewner
ROA, Miguel Angel Duran
crescimento laplaciano
Equação de Loewner
dinâmica de interfaces
formação de padrões
title_short Crescimento Laplaciano em duas dimensões: uma abordagem através da equação de Loewner
title_full Crescimento Laplaciano em duas dimensões: uma abordagem através da equação de Loewner
title_fullStr Crescimento Laplaciano em duas dimensões: uma abordagem através da equação de Loewner
title_full_unstemmed Crescimento Laplaciano em duas dimensões: uma abordagem através da equação de Loewner
title_sort Crescimento Laplaciano em duas dimensões: uma abordagem através da equação de Loewner
author ROA, Miguel Angel Duran
author_facet ROA, Miguel Angel Duran
author_role author
dc.contributor.author.fl_str_mv ROA, Miguel Angel Duran
dc.contributor.advisor1.fl_str_mv VASCONCELOS, Giovani Lopes
contributor_str_mv VASCONCELOS, Giovani Lopes
dc.subject.por.fl_str_mv crescimento laplaciano
Equação de Loewner
dinâmica de interfaces
formação de padrões
topic crescimento laplaciano
Equação de Loewner
dinâmica de interfaces
formação de padrões
description Padrões complexos são frequentemente observados em diferentes fenômenos físicos, tais como, o movimento de uma interface entre dois fluidos não miscíveis, eletrodeposição, etc, onde a dinâmica da interface é controlada pelo gradiente de uma função potencial, a qual satisfaz a equação de Laplace. Recentemente, uma ferramenta importante da análise complexa, a equação de Loewner, tem sido utilizada para estudar problemas de crescimento laplaciano em duas dimensões. Em poucas palavras, a equação de Loewner é uma equação diferencial de primeira ordem para a evolução temporal da transformação conforme que leva o domínio físico , onde se dá o crescimento, em um domínio matemático que se asemelha ao domínio físico inicial (ou seja, aquele existente antes de começar o processo de crescimento). Nesta tese, primeiramente apresentamos uma dedução alternativa da equação de Loewner para dois casos considerados recentemente na literatura em que curvas simples crescem no semiplano superior ou na geometria do canal. Nosso método de obtenção da equação de Loewner é baseado na transformação de Schwarz-Christoffel entre os planos matemáticos em dois instantes de tempo infinitesimalmente próximos. Em seguida, estendemos o formalismo da equação de Loewner para estudar uma clase mais geral de problemas de crescimento, em que agora tem-se o avanço de uma interface envolvendo uma região de área crescente. Em nosso modelo de crescimento, a interface possui certos pontos especiais, chamados de cristas e vales, onde o fator de crescimento é um máximo e um mínimo local, respectivamente. A regra de crescimento do modelo é definida em termos de certas curvas poligonais que crescem no plano matemático. Para as duas geometrias de interesse, o semiplano superior e o canal, deduzimos a correspondente equação de Loewner que governa a dinâmica da interface. Vários exemplos de evolução temporal de interfaces são discutidos, tanto no caso em que se tem uma única interface, seja com uma ou várias cristas, quanto no caso de múltiplas interfaces crescendo simultaneamente. Em particular, o conhecido efeito de blindagem, onde uma das crista avança bem mais que as outras, é normalmente observado para o caso de interfaces não simétricas. Uma breve comparação qualitativa é feita entre nossos resultados e alguns padrões observados em experimento
publishDate 2010
dc.date.issued.fl_str_mv 2010-01-31
dc.date.accessioned.fl_str_mv 2014-06-12T18:06:31Z
dc.date.available.fl_str_mv 2014-06-12T18:06:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Angel Duran Roa, Miguel; Lopes Vasconcelos, Giovani. Crescimento Laplaciano em duas dimensões: uma abordagem através da equação de Loewner. 2010. Tese (Doutorado). Programa de Pós-Graduação em Física, Universidade Federal de Pernambuco, Recife, 2010.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/6633
dc.identifier.dark.fl_str_mv ark:/64986/001300001368j
identifier_str_mv Angel Duran Roa, Miguel; Lopes Vasconcelos, Giovani. Crescimento Laplaciano em duas dimensões: uma abordagem através da equação de Loewner. 2010. Tese (Doutorado). Programa de Pós-Graduação em Física, Universidade Federal de Pernambuco, Recife, 2010.
ark:/64986/001300001368j
url https://repositorio.ufpe.br/handle/123456789/6633
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/6633/4/arquivo904_1.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/6633/1/arquivo904_1.pdf
https://repositorio.ufpe.br/bitstream/123456789/6633/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/6633/3/arquivo904_1.pdf.txt
bitstream.checksum.fl_str_mv e47f2dc3315e0aba99a59010e7ff1286
6c7a1aa3574036c31382491866de428a
8a4605be74aa9ea9d79846c1fba20a33
45d1e758241807d889d2148648bb99bc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1814448427361107968