Previsão de séries temporais utilizando pools de preditores criados a partir do particionamento da série e da divisão da tarefa de previsão
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000p7s9 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/16777 |
Resumo: | A análise de séries temporais é uma importante área de estudo em diversos domínios. Grande parte das pesquisas em análise de séries temporais objetivam encontrar um modelo de previsão que utiliza dados passados da série para prever o seu valor no futuro, e então utiliza-o para a tomada de decisões. Algumas séries temporais apresentam padrões de comportamento que se repetem ao longo dela, tais padrões possuem tamanhos variados e podem ser utilizados para auxiliar a previsão. Esta dissertação propõe um sistema para previsão de séries temporais baseado em dois métodos principais: o primeiro consiste em particionar a série a fim de separar seus padrões de comportamento, o segundo divide a tarefa de previsão nas subtarefas de estimar o sentido da série no futuro e na de estimar o próximo valor a partir da previsão do sentido e do comportamento anterior da série. Para cada uma dessas divisões, é treinado um preditor especialista na tarefa de predição e no padrão de comportamento contido na partição. Para realizar um estudo comparativo, foram utilizadas quatro séries temporais, sendo duas financeiras e duas bastante utilizadas em estudos recentes. Quatro métricas foram usadas para avaliar o modelo proposto, e seus resultados foram comparados às performances dos modelos de Rede Neural Multilayer Perceptron (MLP) e Máquina de Vetor de Suporte para Regressão (SVR), além de modelos de estudos recentes. Também foram analisados os impactos da variação de cada parâmetro do sistema proposto com relação ao desempenho da previsão. O modelo proposto apresentou desempenho superior aos outros modelos avaliados, nas quatro séries. |
id |
UFPE_b8aeaad51d6bbce9bcf495eb815b3caa |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/16777 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
VILA NOVA FILHO, Sérgio René Pessoahttp://lattes.cnpq.br/6630359092152201http://lattes.cnpq.br/8577312109146354CAVALCANTI, George Darmiton da CunhaMATTOS NETO, Paulo Salgado Gomes de2016-04-22T19:11:22Z2016-04-22T19:11:22Z2015-08-28https://repositorio.ufpe.br/handle/123456789/16777ark:/64986/001300000p7s9A análise de séries temporais é uma importante área de estudo em diversos domínios. Grande parte das pesquisas em análise de séries temporais objetivam encontrar um modelo de previsão que utiliza dados passados da série para prever o seu valor no futuro, e então utiliza-o para a tomada de decisões. Algumas séries temporais apresentam padrões de comportamento que se repetem ao longo dela, tais padrões possuem tamanhos variados e podem ser utilizados para auxiliar a previsão. Esta dissertação propõe um sistema para previsão de séries temporais baseado em dois métodos principais: o primeiro consiste em particionar a série a fim de separar seus padrões de comportamento, o segundo divide a tarefa de previsão nas subtarefas de estimar o sentido da série no futuro e na de estimar o próximo valor a partir da previsão do sentido e do comportamento anterior da série. Para cada uma dessas divisões, é treinado um preditor especialista na tarefa de predição e no padrão de comportamento contido na partição. Para realizar um estudo comparativo, foram utilizadas quatro séries temporais, sendo duas financeiras e duas bastante utilizadas em estudos recentes. Quatro métricas foram usadas para avaliar o modelo proposto, e seus resultados foram comparados às performances dos modelos de Rede Neural Multilayer Perceptron (MLP) e Máquina de Vetor de Suporte para Regressão (SVR), além de modelos de estudos recentes. Também foram analisados os impactos da variação de cada parâmetro do sistema proposto com relação ao desempenho da previsão. O modelo proposto apresentou desempenho superior aos outros modelos avaliados, nas quatro séries.Time series analysis is an important area of study in many expertise fields. Great part of the researches in time series analysis aims to find a prediction model, which analyzes the past data to predict the series future value, and then use it to make decisions. Some series exhibit behaviors patterns that repeat along it, such patterns have different sizes and could be used to help the forecast. This dissertation proposes a system to predict the future values of a time series, using two main methods: the first consist on partitioning the series, to segregate behaviour patterns, the second divides the prediction task in the subtasks of estimating the series future direction and the subtask of estimating the series future value from the direction forecast and the past values of the series. For each one of these divisions, a predictor is trained and becomes a specialist on the prediction subtask and in the behaviour pattern of the partition. To perform a comparative study, four time series were used, two are financial time series and two are used in many recent researches. Four performance metrics were used to evaluate, and the results were compared to the results of the Neural Network model (MLP) and the Support Vector Machine for Regression model (SVR), as well as other published studies models. The impacts of the variation of the models parameters on the prediction performance were analyzed as well. The proposed model presented better performance than the compared models on the four series evaluated.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência computacionalPrevisão de séries temporais.Redes neuraisPrevisão de séries temporais utilizando pools de preditores criados a partir do particionamento da série e da divisão da tarefa de previsãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Sérgio René Pessoa Vila Nova Filho.pdf.jpgDISSERTAÇÃO Sérgio René Pessoa Vila Nova Filho.pdf.jpgGenerated Thumbnailimage/jpeg1306https://repositorio.ufpe.br/bitstream/123456789/16777/5/DISSERTA%c3%87%c3%83O%20S%c3%a9rgio%20Ren%c3%a9%20Pessoa%20Vila%20Nova%20Filho.pdf.jpg0ffc5deb91858545f3482c830d3e66ecMD55ORIGINALDISSERTAÇÃO Sérgio René Pessoa Vila Nova Filho.pdfDISSERTAÇÃO Sérgio René Pessoa Vila Nova Filho.pdfapplication/pdf10289306https://repositorio.ufpe.br/bitstream/123456789/16777/1/DISSERTA%c3%87%c3%83O%20S%c3%a9rgio%20Ren%c3%a9%20Pessoa%20Vila%20Nova%20Filho.pdf7f8f4add31df1fd1cdafa9afd295d41dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/16777/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/16777/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDISSERTAÇÃO Sérgio René Pessoa Vila Nova Filho.pdf.txtDISSERTAÇÃO Sérgio René Pessoa Vila Nova Filho.pdf.txtExtracted texttext/plain211218https://repositorio.ufpe.br/bitstream/123456789/16777/4/DISSERTA%c3%87%c3%83O%20S%c3%a9rgio%20Ren%c3%a9%20Pessoa%20Vila%20Nova%20Filho.pdf.txtd99efd7230602bef66068712a53bb993MD54123456789/167772019-10-25 18:39:46.227oai:repositorio.ufpe.br:123456789/16777TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T21:39:46Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Previsão de séries temporais utilizando pools de preditores criados a partir do particionamento da série e da divisão da tarefa de previsão |
title |
Previsão de séries temporais utilizando pools de preditores criados a partir do particionamento da série e da divisão da tarefa de previsão |
spellingShingle |
Previsão de séries temporais utilizando pools de preditores criados a partir do particionamento da série e da divisão da tarefa de previsão VILA NOVA FILHO, Sérgio René Pessoa Inteligência computacional Previsão de séries temporais. Redes neurais |
title_short |
Previsão de séries temporais utilizando pools de preditores criados a partir do particionamento da série e da divisão da tarefa de previsão |
title_full |
Previsão de séries temporais utilizando pools de preditores criados a partir do particionamento da série e da divisão da tarefa de previsão |
title_fullStr |
Previsão de séries temporais utilizando pools de preditores criados a partir do particionamento da série e da divisão da tarefa de previsão |
title_full_unstemmed |
Previsão de séries temporais utilizando pools de preditores criados a partir do particionamento da série e da divisão da tarefa de previsão |
title_sort |
Previsão de séries temporais utilizando pools de preditores criados a partir do particionamento da série e da divisão da tarefa de previsão |
author |
VILA NOVA FILHO, Sérgio René Pessoa |
author_facet |
VILA NOVA FILHO, Sérgio René Pessoa |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6630359092152201 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/8577312109146354 |
dc.contributor.author.fl_str_mv |
VILA NOVA FILHO, Sérgio René Pessoa |
dc.contributor.advisor1.fl_str_mv |
CAVALCANTI, George Darmiton da Cunha |
dc.contributor.advisor-co1.fl_str_mv |
MATTOS NETO, Paulo Salgado Gomes de |
contributor_str_mv |
CAVALCANTI, George Darmiton da Cunha MATTOS NETO, Paulo Salgado Gomes de |
dc.subject.por.fl_str_mv |
Inteligência computacional Previsão de séries temporais. Redes neurais |
topic |
Inteligência computacional Previsão de séries temporais. Redes neurais |
description |
A análise de séries temporais é uma importante área de estudo em diversos domínios. Grande parte das pesquisas em análise de séries temporais objetivam encontrar um modelo de previsão que utiliza dados passados da série para prever o seu valor no futuro, e então utiliza-o para a tomada de decisões. Algumas séries temporais apresentam padrões de comportamento que se repetem ao longo dela, tais padrões possuem tamanhos variados e podem ser utilizados para auxiliar a previsão. Esta dissertação propõe um sistema para previsão de séries temporais baseado em dois métodos principais: o primeiro consiste em particionar a série a fim de separar seus padrões de comportamento, o segundo divide a tarefa de previsão nas subtarefas de estimar o sentido da série no futuro e na de estimar o próximo valor a partir da previsão do sentido e do comportamento anterior da série. Para cada uma dessas divisões, é treinado um preditor especialista na tarefa de predição e no padrão de comportamento contido na partição. Para realizar um estudo comparativo, foram utilizadas quatro séries temporais, sendo duas financeiras e duas bastante utilizadas em estudos recentes. Quatro métricas foram usadas para avaliar o modelo proposto, e seus resultados foram comparados às performances dos modelos de Rede Neural Multilayer Perceptron (MLP) e Máquina de Vetor de Suporte para Regressão (SVR), além de modelos de estudos recentes. Também foram analisados os impactos da variação de cada parâmetro do sistema proposto com relação ao desempenho da previsão. O modelo proposto apresentou desempenho superior aos outros modelos avaliados, nas quatro séries. |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015-08-28 |
dc.date.accessioned.fl_str_mv |
2016-04-22T19:11:22Z |
dc.date.available.fl_str_mv |
2016-04-22T19:11:22Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/16777 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000p7s9 |
url |
https://repositorio.ufpe.br/handle/123456789/16777 |
identifier_str_mv |
ark:/64986/001300000p7s9 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/16777/5/DISSERTA%c3%87%c3%83O%20S%c3%a9rgio%20Ren%c3%a9%20Pessoa%20Vila%20Nova%20Filho.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/16777/1/DISSERTA%c3%87%c3%83O%20S%c3%a9rgio%20Ren%c3%a9%20Pessoa%20Vila%20Nova%20Filho.pdf https://repositorio.ufpe.br/bitstream/123456789/16777/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/16777/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/16777/4/DISSERTA%c3%87%c3%83O%20S%c3%a9rgio%20Ren%c3%a9%20Pessoa%20Vila%20Nova%20Filho.pdf.txt |
bitstream.checksum.fl_str_mv |
0ffc5deb91858545f3482c830d3e66ec 7f8f4add31df1fd1cdafa9afd295d41d 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 d99efd7230602bef66068712a53bb993 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172874224271360 |