Transporte de moléculas orgânicas através de poros nanoscópicos unitários

Detalhes bibliográficos
Autor(a) principal: RODRIGUES, Cláudio Gabriel
Data de Publicação: 2006
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000015mxg
Texto Completo: https://repositorio.ufpe.br/handle/123456789/2100
Resumo: A interação do nanoporo protéico (canal iônico) formado pela α-hemolisina (α-HL) em suporte lipídico plano (membrana) com polímeros do etilenoglicol foi investigada sob dois aspectos: i) entender as bases físico-químicas do processo de transporte destas moléculas orgânicas via poros nanoscópicos e, ii) examinar a viabilidade do emprego do poro nanoscópico como elemento sensor, para detecção estocástica e monitoramento em tempo real de compostos orgânicos em sistemas aquosos. A escolha de duas formas de um mesmo polímero deve-se ao fato de que apesar deles serem quimicamente semelhantes e estáveis, geram estruturas com massa e configurações moleculares diferentes: circular, o éter de coroa (1,4,7,10,13,16-hexaciclooctano, 264 Da), e linear, polietilenoglicóis (PEGs, 200 a 3000 Da). A repulsão entrópica é o principal fator determinante da interação entre o nanoporo e estas moléculas em concentrações de KCl menores que 1 M. O aumento na concentração de KCl até 4 M, aumenta fortemente a força de interação entre o nanoporo e o polímero, tornando-a maior que a repulsão entrópica. O potencial transmembrana, a estrutura e a massa molecular do polímero também influem fortemente nesta interação. A presença destas moléculas orgânicas no lume aquoso do canal manifesta-se por decréscimo na condutância iônica média do nanoporo, e aumento no ruído de corrente iônica. Para o éter de coroa (264 Da) e PEGs com massas moleculares (200-400 Da) semelhantes, o ruído branco até 1 kHz, indica um rápido intercâmbio destas moléculas entre o canal e a solução banhante da membrana. Todavia contrariamente aos PEGs (200-400 Da), a redução de condutância (indicativo do particionamento do éter de coroa no canal), e a intensificação do ruído de corrente (relativo à dinâmica do polímero no nanoporo) dependem fortemente e de forma não monotônica do potencial transmembrana, demonstrando que o éter de coroa atua formando complexo com K+, enquanto que os PEGs menores, são neutros. Considerando o fenômeno de ocupação do canal pelo éter de coroa, descrito por um modelo Markoviano de dois estados, determinamos que o seu tempo de permanência no interior do canal, é máximo (~3 μs), na mesma voltagem (100 mV) em que ocorre a maior redução da condutância iônica. Por outro lado, PEGs de massa molecular maior (600, 1000, 1500, 2000 e 3000 Da) em concentrações salinas elevadas (>1 M KCl), interagem com o nanoporo, dependentemente do potencial transmembrana, indicando a presença de carga elétrica nas moléculas destes polímeros, nessas condições. Estas interações são muito mais fortes que àquelas observadas para o éter de coroa e PEGs de menor massa; conseqüentemente manifestam-se não só por aumento do ruído de corrente iônica, mas, principalmente, pela geração de assinaturas moleculares específicas, que correspondem a profundidade de bloqueio e o tempo de permanência de cada molécula do PEG, no lume aquoso do nanoporo. Os decréscimos nas condutâncias do canal (bloqueios) induzidos por PEGs foram praticamente proporcionais as variações na condutividade da solução salina banhante da membrana, indicando que a água no lume do poro nanoscópico e na solução banhante da membrana, se comporta de maneira similar, e que a presença do polímero reduz a condutividade em ambos os meios por um mesmo mecanismo. A interação entre os PEGs e o nanoporo depende da massa molecular do polímero. Em 4 M de KCl, o tempo de ocupação do poro aumentou de ~0.04 ms, na presença do PEG 600 Da, para ~270 ms, no caso do PEG 3000 Da (uma diferença de ~6000 vezes), enquanto que o coeficiente de partição aumentou em ~250 vezes. A energia de interação entre o nanoporo e os PEGs (≥1000 Da) foi estimada em ~0.13 kT por monômero do polímero. Deste modo altas concentrações de cloreto de potássio na solução banhante da membrana, aumenta a energia da interação das moléculas poliméricas com o nanoporo, criando as condições favoráveis para detecção estocástica de PEGs (600 a 3000 Da). Outrossim, a viabilização do sistema nanoporomembrana como elemento sensor para o desenvolvimento de biossensores estocásticos é possível, porém, estudos adicionais referentes à sua estabilização físico-química, aquisição e automação da análise de assinaturas digitais de corrente, são necessários
id UFPE_bd59d78c6a6af8cd3ee98559fe6bf811
oai_identifier_str oai:repositorio.ufpe.br:123456789/2100
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling RODRIGUES, Cláudio GabrielKRASILNIKOV, Oleg Vladimirovich2014-06-12T15:54:34Z2014-06-12T15:54:34Z2006Gabriel Rodrigues, Cláudio; Vladimirovich Krasilnikov, Oleg. Transporte de moléculas orgânicas através de poros nanoscópicos unitários. 2006. Tese (Doutorado). Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Pernambuco, Recife, 2006.https://repositorio.ufpe.br/handle/123456789/2100ark:/64986/0013000015mxgA interação do nanoporo protéico (canal iônico) formado pela α-hemolisina (α-HL) em suporte lipídico plano (membrana) com polímeros do etilenoglicol foi investigada sob dois aspectos: i) entender as bases físico-químicas do processo de transporte destas moléculas orgânicas via poros nanoscópicos e, ii) examinar a viabilidade do emprego do poro nanoscópico como elemento sensor, para detecção estocástica e monitoramento em tempo real de compostos orgânicos em sistemas aquosos. A escolha de duas formas de um mesmo polímero deve-se ao fato de que apesar deles serem quimicamente semelhantes e estáveis, geram estruturas com massa e configurações moleculares diferentes: circular, o éter de coroa (1,4,7,10,13,16-hexaciclooctano, 264 Da), e linear, polietilenoglicóis (PEGs, 200 a 3000 Da). A repulsão entrópica é o principal fator determinante da interação entre o nanoporo e estas moléculas em concentrações de KCl menores que 1 M. O aumento na concentração de KCl até 4 M, aumenta fortemente a força de interação entre o nanoporo e o polímero, tornando-a maior que a repulsão entrópica. O potencial transmembrana, a estrutura e a massa molecular do polímero também influem fortemente nesta interação. A presença destas moléculas orgânicas no lume aquoso do canal manifesta-se por decréscimo na condutância iônica média do nanoporo, e aumento no ruído de corrente iônica. Para o éter de coroa (264 Da) e PEGs com massas moleculares (200-400 Da) semelhantes, o ruído branco até 1 kHz, indica um rápido intercâmbio destas moléculas entre o canal e a solução banhante da membrana. Todavia contrariamente aos PEGs (200-400 Da), a redução de condutância (indicativo do particionamento do éter de coroa no canal), e a intensificação do ruído de corrente (relativo à dinâmica do polímero no nanoporo) dependem fortemente e de forma não monotônica do potencial transmembrana, demonstrando que o éter de coroa atua formando complexo com K+, enquanto que os PEGs menores, são neutros. Considerando o fenômeno de ocupação do canal pelo éter de coroa, descrito por um modelo Markoviano de dois estados, determinamos que o seu tempo de permanência no interior do canal, é máximo (~3 μs), na mesma voltagem (100 mV) em que ocorre a maior redução da condutância iônica. Por outro lado, PEGs de massa molecular maior (600, 1000, 1500, 2000 e 3000 Da) em concentrações salinas elevadas (>1 M KCl), interagem com o nanoporo, dependentemente do potencial transmembrana, indicando a presença de carga elétrica nas moléculas destes polímeros, nessas condições. Estas interações são muito mais fortes que àquelas observadas para o éter de coroa e PEGs de menor massa; conseqüentemente manifestam-se não só por aumento do ruído de corrente iônica, mas, principalmente, pela geração de assinaturas moleculares específicas, que correspondem a profundidade de bloqueio e o tempo de permanência de cada molécula do PEG, no lume aquoso do nanoporo. Os decréscimos nas condutâncias do canal (bloqueios) induzidos por PEGs foram praticamente proporcionais as variações na condutividade da solução salina banhante da membrana, indicando que a água no lume do poro nanoscópico e na solução banhante da membrana, se comporta de maneira similar, e que a presença do polímero reduz a condutividade em ambos os meios por um mesmo mecanismo. A interação entre os PEGs e o nanoporo depende da massa molecular do polímero. Em 4 M de KCl, o tempo de ocupação do poro aumentou de ~0.04 ms, na presença do PEG 600 Da, para ~270 ms, no caso do PEG 3000 Da (uma diferença de ~6000 vezes), enquanto que o coeficiente de partição aumentou em ~250 vezes. A energia de interação entre o nanoporo e os PEGs (≥1000 Da) foi estimada em ~0.13 kT por monômero do polímero. Deste modo altas concentrações de cloreto de potássio na solução banhante da membrana, aumenta a energia da interação das moléculas poliméricas com o nanoporo, criando as condições favoráveis para detecção estocástica de PEGs (600 a 3000 Da). Outrossim, a viabilização do sistema nanoporomembrana como elemento sensor para o desenvolvimento de biossensores estocásticos é possível, porém, estudos adicionais referentes à sua estabilização físico-química, aquisição e automação da análise de assinaturas digitais de corrente, são necessáriosporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessSensor estocásticoNanoporo&#945-hemolisinaMembranaNanotuboTransporte de moléculas orgânicas através de poros nanoscópicos unitáriosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo5239_1.pdf.jpgarquivo5239_1.pdf.jpgGenerated Thumbnailimage/jpeg1326https://repositorio.ufpe.br/bitstream/123456789/2100/4/arquivo5239_1.pdf.jpg4b2c2ed1440bdc349bff0858f2642c46MD54ORIGINALarquivo5239_1.pdfapplication/pdf8842795https://repositorio.ufpe.br/bitstream/123456789/2100/1/arquivo5239_1.pdf5f857757d3d05774891768c2acb67ae4MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/2100/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo5239_1.pdf.txtarquivo5239_1.pdf.txtExtracted texttext/plain94045https://repositorio.ufpe.br/bitstream/123456789/2100/3/arquivo5239_1.pdf.txt0a94e28eb3a8ced4407abc5ae858b8daMD53123456789/21002019-10-25 16:03:08.982oai:repositorio.ufpe.br:123456789/2100Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T19:03:08Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Transporte de moléculas orgânicas através de poros nanoscópicos unitários
title Transporte de moléculas orgânicas através de poros nanoscópicos unitários
spellingShingle Transporte de moléculas orgânicas através de poros nanoscópicos unitários
RODRIGUES, Cláudio Gabriel
Sensor estocástico
Nanoporo
&#945
-hemolisina
Membrana
Nanotubo
title_short Transporte de moléculas orgânicas através de poros nanoscópicos unitários
title_full Transporte de moléculas orgânicas através de poros nanoscópicos unitários
title_fullStr Transporte de moléculas orgânicas através de poros nanoscópicos unitários
title_full_unstemmed Transporte de moléculas orgânicas através de poros nanoscópicos unitários
title_sort Transporte de moléculas orgânicas através de poros nanoscópicos unitários
author RODRIGUES, Cláudio Gabriel
author_facet RODRIGUES, Cláudio Gabriel
author_role author
dc.contributor.author.fl_str_mv RODRIGUES, Cláudio Gabriel
dc.contributor.advisor1.fl_str_mv KRASILNIKOV, Oleg Vladimirovich
contributor_str_mv KRASILNIKOV, Oleg Vladimirovich
dc.subject.por.fl_str_mv Sensor estocástico
Nanoporo
&#945
-hemolisina
Membrana
Nanotubo
topic Sensor estocástico
Nanoporo
&#945
-hemolisina
Membrana
Nanotubo
description A interação do nanoporo protéico (canal iônico) formado pela α-hemolisina (α-HL) em suporte lipídico plano (membrana) com polímeros do etilenoglicol foi investigada sob dois aspectos: i) entender as bases físico-químicas do processo de transporte destas moléculas orgânicas via poros nanoscópicos e, ii) examinar a viabilidade do emprego do poro nanoscópico como elemento sensor, para detecção estocástica e monitoramento em tempo real de compostos orgânicos em sistemas aquosos. A escolha de duas formas de um mesmo polímero deve-se ao fato de que apesar deles serem quimicamente semelhantes e estáveis, geram estruturas com massa e configurações moleculares diferentes: circular, o éter de coroa (1,4,7,10,13,16-hexaciclooctano, 264 Da), e linear, polietilenoglicóis (PEGs, 200 a 3000 Da). A repulsão entrópica é o principal fator determinante da interação entre o nanoporo e estas moléculas em concentrações de KCl menores que 1 M. O aumento na concentração de KCl até 4 M, aumenta fortemente a força de interação entre o nanoporo e o polímero, tornando-a maior que a repulsão entrópica. O potencial transmembrana, a estrutura e a massa molecular do polímero também influem fortemente nesta interação. A presença destas moléculas orgânicas no lume aquoso do canal manifesta-se por decréscimo na condutância iônica média do nanoporo, e aumento no ruído de corrente iônica. Para o éter de coroa (264 Da) e PEGs com massas moleculares (200-400 Da) semelhantes, o ruído branco até 1 kHz, indica um rápido intercâmbio destas moléculas entre o canal e a solução banhante da membrana. Todavia contrariamente aos PEGs (200-400 Da), a redução de condutância (indicativo do particionamento do éter de coroa no canal), e a intensificação do ruído de corrente (relativo à dinâmica do polímero no nanoporo) dependem fortemente e de forma não monotônica do potencial transmembrana, demonstrando que o éter de coroa atua formando complexo com K+, enquanto que os PEGs menores, são neutros. Considerando o fenômeno de ocupação do canal pelo éter de coroa, descrito por um modelo Markoviano de dois estados, determinamos que o seu tempo de permanência no interior do canal, é máximo (~3 μs), na mesma voltagem (100 mV) em que ocorre a maior redução da condutância iônica. Por outro lado, PEGs de massa molecular maior (600, 1000, 1500, 2000 e 3000 Da) em concentrações salinas elevadas (>1 M KCl), interagem com o nanoporo, dependentemente do potencial transmembrana, indicando a presença de carga elétrica nas moléculas destes polímeros, nessas condições. Estas interações são muito mais fortes que àquelas observadas para o éter de coroa e PEGs de menor massa; conseqüentemente manifestam-se não só por aumento do ruído de corrente iônica, mas, principalmente, pela geração de assinaturas moleculares específicas, que correspondem a profundidade de bloqueio e o tempo de permanência de cada molécula do PEG, no lume aquoso do nanoporo. Os decréscimos nas condutâncias do canal (bloqueios) induzidos por PEGs foram praticamente proporcionais as variações na condutividade da solução salina banhante da membrana, indicando que a água no lume do poro nanoscópico e na solução banhante da membrana, se comporta de maneira similar, e que a presença do polímero reduz a condutividade em ambos os meios por um mesmo mecanismo. A interação entre os PEGs e o nanoporo depende da massa molecular do polímero. Em 4 M de KCl, o tempo de ocupação do poro aumentou de ~0.04 ms, na presença do PEG 600 Da, para ~270 ms, no caso do PEG 3000 Da (uma diferença de ~6000 vezes), enquanto que o coeficiente de partição aumentou em ~250 vezes. A energia de interação entre o nanoporo e os PEGs (≥1000 Da) foi estimada em ~0.13 kT por monômero do polímero. Deste modo altas concentrações de cloreto de potássio na solução banhante da membrana, aumenta a energia da interação das moléculas poliméricas com o nanoporo, criando as condições favoráveis para detecção estocástica de PEGs (600 a 3000 Da). Outrossim, a viabilização do sistema nanoporomembrana como elemento sensor para o desenvolvimento de biossensores estocásticos é possível, porém, estudos adicionais referentes à sua estabilização físico-química, aquisição e automação da análise de assinaturas digitais de corrente, são necessários
publishDate 2006
dc.date.issued.fl_str_mv 2006
dc.date.accessioned.fl_str_mv 2014-06-12T15:54:34Z
dc.date.available.fl_str_mv 2014-06-12T15:54:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Gabriel Rodrigues, Cláudio; Vladimirovich Krasilnikov, Oleg. Transporte de moléculas orgânicas através de poros nanoscópicos unitários. 2006. Tese (Doutorado). Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Pernambuco, Recife, 2006.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/2100
dc.identifier.dark.fl_str_mv ark:/64986/0013000015mxg
identifier_str_mv Gabriel Rodrigues, Cláudio; Vladimirovich Krasilnikov, Oleg. Transporte de moléculas orgânicas através de poros nanoscópicos unitários. 2006. Tese (Doutorado). Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Pernambuco, Recife, 2006.
ark:/64986/0013000015mxg
url https://repositorio.ufpe.br/handle/123456789/2100
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/2100/4/arquivo5239_1.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/2100/1/arquivo5239_1.pdf
https://repositorio.ufpe.br/bitstream/123456789/2100/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/2100/3/arquivo5239_1.pdf.txt
bitstream.checksum.fl_str_mv 4b2c2ed1440bdc349bff0858f2642c46
5f857757d3d05774891768c2acb67ae4
8a4605be74aa9ea9d79846c1fba20a33
0a94e28eb3a8ced4407abc5ae858b8da
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815173011318243328