New generalized Nadarajah-Haghighi distributions in survival analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000012gnh |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/25300 |
Resumo: | The interest in developing new continuous distributions a remain important in statistical analysis. This topic is also important in survival analysis and has been used in many applications in fields like biological sciences, economics, engineering, physics, social sciences, among others. One reason is that the time of life or survival time is a random variable which can take constant, decreasing, increasing, upside-down bathtub (unimodal) and bathtub-shaped hazard rate functions. These new models can be defined by adding parameters to an existing distribution and considering the compounding approach, among other techniques. In this thesis, we consider these methods to propose four new continuous distributions, namely the exponentiated generalized power Weibull, Nadarajah-Haghighi Lindley, Weibull Nadarajah-Haghighi and logistic Nadarajah-Haghighi distributions. We provide a comprehensive mathematical and statistical treatment of these distributions and illustrate their flexibility through applications to real data sets. They are useful alternatives to other classical lifetime models. |
id |
UFPE_bf92be3ad2ed963e7a2a4d740d464f42 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/25300 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
PEÑA RAMÍREZ, Fernando Arturohttp://lattes.cnpq.br/2373715935907436http://lattes.cnpq.br/3268732497595112CORDEIRO, Gauss Moutinho2018-07-31T21:51:01Z2018-07-31T21:51:01Z2017-05-30https://repositorio.ufpe.br/handle/123456789/25300ark:/64986/0013000012gnhThe interest in developing new continuous distributions a remain important in statistical analysis. This topic is also important in survival analysis and has been used in many applications in fields like biological sciences, economics, engineering, physics, social sciences, among others. One reason is that the time of life or survival time is a random variable which can take constant, decreasing, increasing, upside-down bathtub (unimodal) and bathtub-shaped hazard rate functions. These new models can be defined by adding parameters to an existing distribution and considering the compounding approach, among other techniques. In this thesis, we consider these methods to propose four new continuous distributions, namely the exponentiated generalized power Weibull, Nadarajah-Haghighi Lindley, Weibull Nadarajah-Haghighi and logistic Nadarajah-Haghighi distributions. We provide a comprehensive mathematical and statistical treatment of these distributions and illustrate their flexibility through applications to real data sets. They are useful alternatives to other classical lifetime models.CAPESA geração de novas distribuições contínuas constitui uma importante área de pesquisa em Estatística. Este tópico é, também, importante na área de análise de sobrevivência e tem aplicações em outros campos do conhecimento, tais como, ciências biológicas, economia, engenheria, física, ciências sociais, entre outras. Uma das razões para generalizar uma distribuição conhecida é que a função de risco em forma generalizada é mais flexível podendo assumir padrão constante, crescente, decrescente, banheira invertida (unimodal) e forma de banheira. Estes novos modelos podem ser definidos adicionando parâmetros usando como base uma distribuição já existente ou fazendo composição de duas ou mais distribuições, entre outras técnicas. Nesta tese, consideramos esses métodos para propor quatro novas distribuições contínuas: as distribuições exponentiated generalized power Weibull, Nadarajah-Haghighi Lindley, Weibull Nadarajah-Haghighi e logistic Nadarajah-Haghighi. Estudamos importantes propriedades matemáticas e estatísticas dessas distribuições e evidenciamos a flexibilidade delas por meio de aplicações usando conjuntos de dados reais. As quatro novas distribuições constituem uma alternativa competitiva para outras distribuições clássicas para descrever dados de sobrevivência.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em EstatisticaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEstatística aplicadaProbabilidadeNew generalized Nadarajah-Haghighi distributions in survival analysisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Fernando Arturo Peña Ramírez.pdf.jpgTESE Fernando Arturo Peña Ramírez.pdf.jpgGenerated Thumbnailimage/jpeg1222https://repositorio.ufpe.br/bitstream/123456789/25300/6/TESE%20Fernando%20Arturo%20Pe%c3%b1a%20Ram%c3%adrez.pdf.jpg5467cd7d7ff42ef5e5d7fa291f38cbcdMD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/25300/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/25300/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53ORIGINALTESE Fernando Arturo Peña Ramírez.pdfTESE Fernando Arturo Peña Ramírez.pdfapplication/pdf3052934https://repositorio.ufpe.br/bitstream/123456789/25300/4/TESE%20Fernando%20Arturo%20Pe%c3%b1a%20Ram%c3%adrez.pdf494b9396bd0752ef35a8e2e3eeb5b881MD54TEXTTESE Fernando Arturo Peña Ramírez.pdf.txtTESE Fernando Arturo Peña Ramírez.pdf.txtExtracted texttext/plain166026https://repositorio.ufpe.br/bitstream/123456789/25300/5/TESE%20Fernando%20Arturo%20Pe%c3%b1a%20Ram%c3%adrez.pdf.txt33c8317dcf9192c9febb1692c29a5683MD55123456789/253002019-10-25 09:05:14.836oai:repositorio.ufpe.br:123456789/25300TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T12:05:14Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
New generalized Nadarajah-Haghighi distributions in survival analysis |
title |
New generalized Nadarajah-Haghighi distributions in survival analysis |
spellingShingle |
New generalized Nadarajah-Haghighi distributions in survival analysis PEÑA RAMÍREZ, Fernando Arturo Estatística aplicada Probabilidade |
title_short |
New generalized Nadarajah-Haghighi distributions in survival analysis |
title_full |
New generalized Nadarajah-Haghighi distributions in survival analysis |
title_fullStr |
New generalized Nadarajah-Haghighi distributions in survival analysis |
title_full_unstemmed |
New generalized Nadarajah-Haghighi distributions in survival analysis |
title_sort |
New generalized Nadarajah-Haghighi distributions in survival analysis |
author |
PEÑA RAMÍREZ, Fernando Arturo |
author_facet |
PEÑA RAMÍREZ, Fernando Arturo |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/2373715935907436 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/3268732497595112 |
dc.contributor.author.fl_str_mv |
PEÑA RAMÍREZ, Fernando Arturo |
dc.contributor.advisor1.fl_str_mv |
CORDEIRO, Gauss Moutinho |
contributor_str_mv |
CORDEIRO, Gauss Moutinho |
dc.subject.por.fl_str_mv |
Estatística aplicada Probabilidade |
topic |
Estatística aplicada Probabilidade |
description |
The interest in developing new continuous distributions a remain important in statistical analysis. This topic is also important in survival analysis and has been used in many applications in fields like biological sciences, economics, engineering, physics, social sciences, among others. One reason is that the time of life or survival time is a random variable which can take constant, decreasing, increasing, upside-down bathtub (unimodal) and bathtub-shaped hazard rate functions. These new models can be defined by adding parameters to an existing distribution and considering the compounding approach, among other techniques. In this thesis, we consider these methods to propose four new continuous distributions, namely the exponentiated generalized power Weibull, Nadarajah-Haghighi Lindley, Weibull Nadarajah-Haghighi and logistic Nadarajah-Haghighi distributions. We provide a comprehensive mathematical and statistical treatment of these distributions and illustrate their flexibility through applications to real data sets. They are useful alternatives to other classical lifetime models. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-05-30 |
dc.date.accessioned.fl_str_mv |
2018-07-31T21:51:01Z |
dc.date.available.fl_str_mv |
2018-07-31T21:51:01Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/25300 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000012gnh |
url |
https://repositorio.ufpe.br/handle/123456789/25300 |
identifier_str_mv |
ark:/64986/0013000012gnh |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Estatistica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/25300/6/TESE%20Fernando%20Arturo%20Pe%c3%b1a%20Ram%c3%adrez.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/25300/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/25300/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/25300/4/TESE%20Fernando%20Arturo%20Pe%c3%b1a%20Ram%c3%adrez.pdf https://repositorio.ufpe.br/bitstream/123456789/25300/5/TESE%20Fernando%20Arturo%20Pe%c3%b1a%20Ram%c3%adrez.pdf.txt |
bitstream.checksum.fl_str_mv |
5467cd7d7ff42ef5e5d7fa291f38cbcd e39d27027a6cc9cb039ad269a5db8e34 4b8a02c7f2818eaf00dcf2260dd5eb08 494b9396bd0752ef35a8e2e3eeb5b881 33c8317dcf9192c9febb1692c29a5683 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172981455847424 |