Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems

Detalhes bibliográficos
Autor(a) principal: ALBUQUERQUE, Pedro Victor Paixão
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000pmwm
Texto Completo: https://repositorio.ufpe.br/handle/123456789/49206
Resumo: Modeling physical phenomena and how they interact with each another is at the core of Science and Engineering. In the present work, the phenomena of interest is the so called Poroelasticy, which is a field of science that studies the relationship between fluid flow and solid deformation within a porous media. This theory have several applications such as in Geotechnical and Petroleum Engineering, Hydrogeology and even in Medicine and Biology, to name a few. In the context of Petroleum Reservoir Engineering, until recently, the reservoir rocks mechanical response was neglected, to reduce simulations costs, since the main phenomena of interest was how the fluid flows inside the reservoir. The presence of a freely moving fluid in a porous rock modifies its mechanical response and, in return, this mechanical response influences the fluid flow inside the pore. The mathematical modeling of the aforementioned physical phenomena results in a set of partial differential equations which only have proper analytical solutions in simple, non-realistic cases. However, with the development of numerical and computational tools, approximate solutions can be obtained, thus allowing the understanding and prediction of the behavior of such physical phenomena. The mathematical model used in the present work is based on Biot’s theory of poroelasticity with the following assumptions for the solid phase: Quasi-static loading; Plane Strain; Infinitesimal Strain; Isotropic Linear Elasticity; Compressible Solid Matrix; and the following assumptions for the fluid phase: Single Phase Fluid; Slightly Compressible Fluid; Newtonian Fluid; Isotermic flow and; No gravitational effects. The set of Differential Equations were approximated via a unified finite volume framework, using a Multipoint Flux Approximation unsing Harmonic Points for both the fluid and solid equations, with a co-located variable arrangement and the Rhie-Chow interpolation, along with a Backwards Euler Scheme for temporal integration. The coupling between pressure and displacement was done via the fixed-strain split. The numerical modeling described in the present work is verified using benchmark problems found in the Poroelasticiy Literature. The results presented shows the numerical model is capable of producing robust and accurate approximated solutions, with both structured and unstructured meshes.
id UFPE_c85844e60db9305c1a2b1a209a220c99
oai_identifier_str oai:repositorio.ufpe.br:123456789/49206
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling ALBUQUERQUE, Pedro Victor Paixãohttp://lattes.cnpq.br/9027658728319463http://lattes.cnpq.br/9033828541812842http://lattes.cnpq.br/6568615406054840CARVALHO, Darlan Karlo Elisiário deLYRA, Paulo Roberto Maciel2023-02-28T12:57:23Z2023-02-28T12:57:23Z2023-02-03ALBUQUERQUE, Pedro Victor Paixão. Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems. 2023. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal de pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/49206ark:/64986/001300000pmwmModeling physical phenomena and how they interact with each another is at the core of Science and Engineering. In the present work, the phenomena of interest is the so called Poroelasticy, which is a field of science that studies the relationship between fluid flow and solid deformation within a porous media. This theory have several applications such as in Geotechnical and Petroleum Engineering, Hydrogeology and even in Medicine and Biology, to name a few. In the context of Petroleum Reservoir Engineering, until recently, the reservoir rocks mechanical response was neglected, to reduce simulations costs, since the main phenomena of interest was how the fluid flows inside the reservoir. The presence of a freely moving fluid in a porous rock modifies its mechanical response and, in return, this mechanical response influences the fluid flow inside the pore. The mathematical modeling of the aforementioned physical phenomena results in a set of partial differential equations which only have proper analytical solutions in simple, non-realistic cases. However, with the development of numerical and computational tools, approximate solutions can be obtained, thus allowing the understanding and prediction of the behavior of such physical phenomena. The mathematical model used in the present work is based on Biot’s theory of poroelasticity with the following assumptions for the solid phase: Quasi-static loading; Plane Strain; Infinitesimal Strain; Isotropic Linear Elasticity; Compressible Solid Matrix; and the following assumptions for the fluid phase: Single Phase Fluid; Slightly Compressible Fluid; Newtonian Fluid; Isotermic flow and; No gravitational effects. The set of Differential Equations were approximated via a unified finite volume framework, using a Multipoint Flux Approximation unsing Harmonic Points for both the fluid and solid equations, with a co-located variable arrangement and the Rhie-Chow interpolation, along with a Backwards Euler Scheme for temporal integration. The coupling between pressure and displacement was done via the fixed-strain split. The numerical modeling described in the present work is verified using benchmark problems found in the Poroelasticiy Literature. The results presented shows the numerical model is capable of producing robust and accurate approximated solutions, with both structured and unstructured meshes.CAPESModelar os diversos fenômenos físicos que ocorrem na natureza e como eles interagem uns com os outros esta no cerne da Ciência e da Engenharia. No presente trabalho, o fenômeno de interesse é a chamada Poroelasticidade, que é um campo da ciência que estuda a relação entre escoamento de fluidos em meios porosos e a deformação do mesmo. Esta teoria tem várias aplicações, como em Engenharia Geotécnica e de Petróleo, Hidrogeologia e até em Medicina e Biologia. No contexto da Engenharia de Reservatórios de Petróleo, até recentemente, a resposta mecânica das rochas reservatório era negligenciada, para reduzir os custos de simulações, uma vez que o principal fenômeno de interesse é o escoamento de fluido dentro do reservatório. A presença de um fluido em movimento dentro de uma rocha porosa modifica sua resposta mecânica e, por sua vez, essa resposta mecânica influencia o fluxo do fluido no interior do poro. A modelagem matemática dos fenômenos físicos mencionados resulta em um conjunto de equações diferenciais parciais que só possuem soluções analíticas em casos muito simplificados. Porém, com o desenvolvimento de ferramentas numéricas e computacionais, soluções aproximadas podem ser obtidas, permitindo assim a compreensão e previsão do comportamento de tais fenômenos físicos. O modelo matemático utilizado no presente trabalho é baseado na teoria da poroelasticidade de Biot com as seguintes considerações para a fase sólida: Carregamento quase-estático; Estado Plano de Deformação; Deformação infinitesimal; Elasticidade Linear Isotrópica e; Matriz Sólida Compressível; e as seguintes hipóteses para a fase fluida: Fluido Monofásico; Fluido levemente compressível; Fluido Newtoniano; Escoamento isotérmico e; Sem efeitos gravitacionais. O conjunto de equações diferenciais foi aproximado por meio de uma estrutura unificada em volumes finitos, usando uma aproximação de fluxo por múltiplos pontos usando pontos harmônicos para as equações de fluido e sólido, e com arranjo co- localizado para as variaveis e a interpolação de Rhie-Chow, juntamente com um esquema de Euler implícito para a integração temporal. O acoplamento entre pressão e deslocamento foi feito via a técnica Fixed-Strain. A modelagem numérica descrita no presente trabalho é verificada através da solução de problemas de referência encontrados na literatura de poroelasticidade. Os resultados apresentados mostram que o modelo numérico é capaz de produzir soluções aproximadas robustas e acuradas, tanto com malhas estruturadas quanto não estruturadas.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia CivilUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEngenharia civilMétodo dos volumes finitosAproximação de fluxo por múltiplos pontosSimulação de reservatóriosPoroelasticidadeGeomecânicaFinite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETEXTDISSERTAÇÃO Pedro Victor Paixão Albuquerque.pdf.txtDISSERTAÇÃO Pedro Victor Paixão Albuquerque.pdf.txtExtracted texttext/plain154752https://repositorio.ufpe.br/bitstream/123456789/49206/4/DISSERTA%c3%87%c3%83O%20Pedro%20Victor%20Paix%c3%a3o%20Albuquerque.pdf.txt2f02311321fa4975f82722a70ec69364MD54THUMBNAILDISSERTAÇÃO Pedro Victor Paixão Albuquerque.pdf.jpgDISSERTAÇÃO Pedro Victor Paixão Albuquerque.pdf.jpgGenerated Thumbnailimage/jpeg1228https://repositorio.ufpe.br/bitstream/123456789/49206/5/DISSERTA%c3%87%c3%83O%20Pedro%20Victor%20Paix%c3%a3o%20Albuquerque.pdf.jpg35363906b7748c5c7c4ea5286814cba6MD55ORIGINALDISSERTAÇÃO Pedro Victor Paixão Albuquerque.pdfDISSERTAÇÃO Pedro Victor Paixão Albuquerque.pdfapplication/pdf2227185https://repositorio.ufpe.br/bitstream/123456789/49206/1/DISSERTA%c3%87%c3%83O%20Pedro%20Victor%20Paix%c3%a3o%20Albuquerque.pdf39b099b5f89178afab942bb8d7e251f2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/49206/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/49206/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53123456789/492062023-03-01 02:14:32.945oai:repositorio.ufpe.br:123456789/49206VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-03-01T05:14:32Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems
title Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems
spellingShingle Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems
ALBUQUERQUE, Pedro Victor Paixão
Engenharia civil
Método dos volumes finitos
Aproximação de fluxo por múltiplos pontos
Simulação de reservatórios
Poroelasticidade
Geomecânica
title_short Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems
title_full Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems
title_fullStr Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems
title_full_unstemmed Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems
title_sort Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems
author ALBUQUERQUE, Pedro Victor Paixão
author_facet ALBUQUERQUE, Pedro Victor Paixão
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9027658728319463
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9033828541812842
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6568615406054840
dc.contributor.author.fl_str_mv ALBUQUERQUE, Pedro Victor Paixão
dc.contributor.advisor1.fl_str_mv CARVALHO, Darlan Karlo Elisiário de
dc.contributor.advisor-co1.fl_str_mv LYRA, Paulo Roberto Maciel
contributor_str_mv CARVALHO, Darlan Karlo Elisiário de
LYRA, Paulo Roberto Maciel
dc.subject.por.fl_str_mv Engenharia civil
Método dos volumes finitos
Aproximação de fluxo por múltiplos pontos
Simulação de reservatórios
Poroelasticidade
Geomecânica
topic Engenharia civil
Método dos volumes finitos
Aproximação de fluxo por múltiplos pontos
Simulação de reservatórios
Poroelasticidade
Geomecânica
description Modeling physical phenomena and how they interact with each another is at the core of Science and Engineering. In the present work, the phenomena of interest is the so called Poroelasticy, which is a field of science that studies the relationship between fluid flow and solid deformation within a porous media. This theory have several applications such as in Geotechnical and Petroleum Engineering, Hydrogeology and even in Medicine and Biology, to name a few. In the context of Petroleum Reservoir Engineering, until recently, the reservoir rocks mechanical response was neglected, to reduce simulations costs, since the main phenomena of interest was how the fluid flows inside the reservoir. The presence of a freely moving fluid in a porous rock modifies its mechanical response and, in return, this mechanical response influences the fluid flow inside the pore. The mathematical modeling of the aforementioned physical phenomena results in a set of partial differential equations which only have proper analytical solutions in simple, non-realistic cases. However, with the development of numerical and computational tools, approximate solutions can be obtained, thus allowing the understanding and prediction of the behavior of such physical phenomena. The mathematical model used in the present work is based on Biot’s theory of poroelasticity with the following assumptions for the solid phase: Quasi-static loading; Plane Strain; Infinitesimal Strain; Isotropic Linear Elasticity; Compressible Solid Matrix; and the following assumptions for the fluid phase: Single Phase Fluid; Slightly Compressible Fluid; Newtonian Fluid; Isotermic flow and; No gravitational effects. The set of Differential Equations were approximated via a unified finite volume framework, using a Multipoint Flux Approximation unsing Harmonic Points for both the fluid and solid equations, with a co-located variable arrangement and the Rhie-Chow interpolation, along with a Backwards Euler Scheme for temporal integration. The coupling between pressure and displacement was done via the fixed-strain split. The numerical modeling described in the present work is verified using benchmark problems found in the Poroelasticiy Literature. The results presented shows the numerical model is capable of producing robust and accurate approximated solutions, with both structured and unstructured meshes.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-02-28T12:57:23Z
dc.date.available.fl_str_mv 2023-02-28T12:57:23Z
dc.date.issued.fl_str_mv 2023-02-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ALBUQUERQUE, Pedro Victor Paixão. Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems. 2023. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal de pernambuco, Recife, 2023.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/49206
dc.identifier.dark.fl_str_mv ark:/64986/001300000pmwm
identifier_str_mv ALBUQUERQUE, Pedro Victor Paixão. Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems. 2023. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal de pernambuco, Recife, 2023.
ark:/64986/001300000pmwm
url https://repositorio.ufpe.br/handle/123456789/49206
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Engenharia Civil
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/49206/4/DISSERTA%c3%87%c3%83O%20Pedro%20Victor%20Paix%c3%a3o%20Albuquerque.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/49206/5/DISSERTA%c3%87%c3%83O%20Pedro%20Victor%20Paix%c3%a3o%20Albuquerque.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/49206/1/DISSERTA%c3%87%c3%83O%20Pedro%20Victor%20Paix%c3%a3o%20Albuquerque.pdf
https://repositorio.ufpe.br/bitstream/123456789/49206/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/49206/3/license.txt
bitstream.checksum.fl_str_mv 2f02311321fa4975f82722a70ec69364
35363906b7748c5c7c4ea5286814cba6
39b099b5f89178afab942bb8d7e251f2
e39d27027a6cc9cb039ad269a5db8e34
5e89a1613ddc8510c6576f4b23a78973
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172877869121536