Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000pmwm |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/49206 |
Resumo: | Modeling physical phenomena and how they interact with each another is at the core of Science and Engineering. In the present work, the phenomena of interest is the so called Poroelasticy, which is a field of science that studies the relationship between fluid flow and solid deformation within a porous media. This theory have several applications such as in Geotechnical and Petroleum Engineering, Hydrogeology and even in Medicine and Biology, to name a few. In the context of Petroleum Reservoir Engineering, until recently, the reservoir rocks mechanical response was neglected, to reduce simulations costs, since the main phenomena of interest was how the fluid flows inside the reservoir. The presence of a freely moving fluid in a porous rock modifies its mechanical response and, in return, this mechanical response influences the fluid flow inside the pore. The mathematical modeling of the aforementioned physical phenomena results in a set of partial differential equations which only have proper analytical solutions in simple, non-realistic cases. However, with the development of numerical and computational tools, approximate solutions can be obtained, thus allowing the understanding and prediction of the behavior of such physical phenomena. The mathematical model used in the present work is based on Biot’s theory of poroelasticity with the following assumptions for the solid phase: Quasi-static loading; Plane Strain; Infinitesimal Strain; Isotropic Linear Elasticity; Compressible Solid Matrix; and the following assumptions for the fluid phase: Single Phase Fluid; Slightly Compressible Fluid; Newtonian Fluid; Isotermic flow and; No gravitational effects. The set of Differential Equations were approximated via a unified finite volume framework, using a Multipoint Flux Approximation unsing Harmonic Points for both the fluid and solid equations, with a co-located variable arrangement and the Rhie-Chow interpolation, along with a Backwards Euler Scheme for temporal integration. The coupling between pressure and displacement was done via the fixed-strain split. The numerical modeling described in the present work is verified using benchmark problems found in the Poroelasticiy Literature. The results presented shows the numerical model is capable of producing robust and accurate approximated solutions, with both structured and unstructured meshes. |
id |
UFPE_c85844e60db9305c1a2b1a209a220c99 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/49206 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
ALBUQUERQUE, Pedro Victor Paixãohttp://lattes.cnpq.br/9027658728319463http://lattes.cnpq.br/9033828541812842http://lattes.cnpq.br/6568615406054840CARVALHO, Darlan Karlo Elisiário deLYRA, Paulo Roberto Maciel2023-02-28T12:57:23Z2023-02-28T12:57:23Z2023-02-03ALBUQUERQUE, Pedro Victor Paixão. Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems. 2023. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal de pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/49206ark:/64986/001300000pmwmModeling physical phenomena and how they interact with each another is at the core of Science and Engineering. In the present work, the phenomena of interest is the so called Poroelasticy, which is a field of science that studies the relationship between fluid flow and solid deformation within a porous media. This theory have several applications such as in Geotechnical and Petroleum Engineering, Hydrogeology and even in Medicine and Biology, to name a few. In the context of Petroleum Reservoir Engineering, until recently, the reservoir rocks mechanical response was neglected, to reduce simulations costs, since the main phenomena of interest was how the fluid flows inside the reservoir. The presence of a freely moving fluid in a porous rock modifies its mechanical response and, in return, this mechanical response influences the fluid flow inside the pore. The mathematical modeling of the aforementioned physical phenomena results in a set of partial differential equations which only have proper analytical solutions in simple, non-realistic cases. However, with the development of numerical and computational tools, approximate solutions can be obtained, thus allowing the understanding and prediction of the behavior of such physical phenomena. The mathematical model used in the present work is based on Biot’s theory of poroelasticity with the following assumptions for the solid phase: Quasi-static loading; Plane Strain; Infinitesimal Strain; Isotropic Linear Elasticity; Compressible Solid Matrix; and the following assumptions for the fluid phase: Single Phase Fluid; Slightly Compressible Fluid; Newtonian Fluid; Isotermic flow and; No gravitational effects. The set of Differential Equations were approximated via a unified finite volume framework, using a Multipoint Flux Approximation unsing Harmonic Points for both the fluid and solid equations, with a co-located variable arrangement and the Rhie-Chow interpolation, along with a Backwards Euler Scheme for temporal integration. The coupling between pressure and displacement was done via the fixed-strain split. The numerical modeling described in the present work is verified using benchmark problems found in the Poroelasticiy Literature. The results presented shows the numerical model is capable of producing robust and accurate approximated solutions, with both structured and unstructured meshes.CAPESModelar os diversos fenômenos físicos que ocorrem na natureza e como eles interagem uns com os outros esta no cerne da Ciência e da Engenharia. No presente trabalho, o fenômeno de interesse é a chamada Poroelasticidade, que é um campo da ciência que estuda a relação entre escoamento de fluidos em meios porosos e a deformação do mesmo. Esta teoria tem várias aplicações, como em Engenharia Geotécnica e de Petróleo, Hidrogeologia e até em Medicina e Biologia. No contexto da Engenharia de Reservatórios de Petróleo, até recentemente, a resposta mecânica das rochas reservatório era negligenciada, para reduzir os custos de simulações, uma vez que o principal fenômeno de interesse é o escoamento de fluido dentro do reservatório. A presença de um fluido em movimento dentro de uma rocha porosa modifica sua resposta mecânica e, por sua vez, essa resposta mecânica influencia o fluxo do fluido no interior do poro. A modelagem matemática dos fenômenos físicos mencionados resulta em um conjunto de equações diferenciais parciais que só possuem soluções analíticas em casos muito simplificados. Porém, com o desenvolvimento de ferramentas numéricas e computacionais, soluções aproximadas podem ser obtidas, permitindo assim a compreensão e previsão do comportamento de tais fenômenos físicos. O modelo matemático utilizado no presente trabalho é baseado na teoria da poroelasticidade de Biot com as seguintes considerações para a fase sólida: Carregamento quase-estático; Estado Plano de Deformação; Deformação infinitesimal; Elasticidade Linear Isotrópica e; Matriz Sólida Compressível; e as seguintes hipóteses para a fase fluida: Fluido Monofásico; Fluido levemente compressível; Fluido Newtoniano; Escoamento isotérmico e; Sem efeitos gravitacionais. O conjunto de equações diferenciais foi aproximado por meio de uma estrutura unificada em volumes finitos, usando uma aproximação de fluxo por múltiplos pontos usando pontos harmônicos para as equações de fluido e sólido, e com arranjo co- localizado para as variaveis e a interpolação de Rhie-Chow, juntamente com um esquema de Euler implícito para a integração temporal. O acoplamento entre pressão e deslocamento foi feito via a técnica Fixed-Strain. A modelagem numérica descrita no presente trabalho é verificada através da solução de problemas de referência encontrados na literatura de poroelasticidade. Os resultados apresentados mostram que o modelo numérico é capaz de produzir soluções aproximadas robustas e acuradas, tanto com malhas estruturadas quanto não estruturadas.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia CivilUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEngenharia civilMétodo dos volumes finitosAproximação de fluxo por múltiplos pontosSimulação de reservatóriosPoroelasticidadeGeomecânicaFinite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETEXTDISSERTAÇÃO Pedro Victor Paixão Albuquerque.pdf.txtDISSERTAÇÃO Pedro Victor Paixão Albuquerque.pdf.txtExtracted texttext/plain154752https://repositorio.ufpe.br/bitstream/123456789/49206/4/DISSERTA%c3%87%c3%83O%20Pedro%20Victor%20Paix%c3%a3o%20Albuquerque.pdf.txt2f02311321fa4975f82722a70ec69364MD54THUMBNAILDISSERTAÇÃO Pedro Victor Paixão Albuquerque.pdf.jpgDISSERTAÇÃO Pedro Victor Paixão Albuquerque.pdf.jpgGenerated Thumbnailimage/jpeg1228https://repositorio.ufpe.br/bitstream/123456789/49206/5/DISSERTA%c3%87%c3%83O%20Pedro%20Victor%20Paix%c3%a3o%20Albuquerque.pdf.jpg35363906b7748c5c7c4ea5286814cba6MD55ORIGINALDISSERTAÇÃO Pedro Victor Paixão Albuquerque.pdfDISSERTAÇÃO Pedro Victor Paixão Albuquerque.pdfapplication/pdf2227185https://repositorio.ufpe.br/bitstream/123456789/49206/1/DISSERTA%c3%87%c3%83O%20Pedro%20Victor%20Paix%c3%a3o%20Albuquerque.pdf39b099b5f89178afab942bb8d7e251f2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/49206/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/49206/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53123456789/492062023-03-01 02:14:32.945oai:repositorio.ufpe.br:123456789/49206VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-03-01T05:14:32Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems |
title |
Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems |
spellingShingle |
Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems ALBUQUERQUE, Pedro Victor Paixão Engenharia civil Método dos volumes finitos Aproximação de fluxo por múltiplos pontos Simulação de reservatórios Poroelasticidade Geomecânica |
title_short |
Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems |
title_full |
Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems |
title_fullStr |
Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems |
title_full_unstemmed |
Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems |
title_sort |
Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems |
author |
ALBUQUERQUE, Pedro Victor Paixão |
author_facet |
ALBUQUERQUE, Pedro Victor Paixão |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9027658728319463 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9033828541812842 |
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6568615406054840 |
dc.contributor.author.fl_str_mv |
ALBUQUERQUE, Pedro Victor Paixão |
dc.contributor.advisor1.fl_str_mv |
CARVALHO, Darlan Karlo Elisiário de |
dc.contributor.advisor-co1.fl_str_mv |
LYRA, Paulo Roberto Maciel |
contributor_str_mv |
CARVALHO, Darlan Karlo Elisiário de LYRA, Paulo Roberto Maciel |
dc.subject.por.fl_str_mv |
Engenharia civil Método dos volumes finitos Aproximação de fluxo por múltiplos pontos Simulação de reservatórios Poroelasticidade Geomecânica |
topic |
Engenharia civil Método dos volumes finitos Aproximação de fluxo por múltiplos pontos Simulação de reservatórios Poroelasticidade Geomecânica |
description |
Modeling physical phenomena and how they interact with each another is at the core of Science and Engineering. In the present work, the phenomena of interest is the so called Poroelasticy, which is a field of science that studies the relationship between fluid flow and solid deformation within a porous media. This theory have several applications such as in Geotechnical and Petroleum Engineering, Hydrogeology and even in Medicine and Biology, to name a few. In the context of Petroleum Reservoir Engineering, until recently, the reservoir rocks mechanical response was neglected, to reduce simulations costs, since the main phenomena of interest was how the fluid flows inside the reservoir. The presence of a freely moving fluid in a porous rock modifies its mechanical response and, in return, this mechanical response influences the fluid flow inside the pore. The mathematical modeling of the aforementioned physical phenomena results in a set of partial differential equations which only have proper analytical solutions in simple, non-realistic cases. However, with the development of numerical and computational tools, approximate solutions can be obtained, thus allowing the understanding and prediction of the behavior of such physical phenomena. The mathematical model used in the present work is based on Biot’s theory of poroelasticity with the following assumptions for the solid phase: Quasi-static loading; Plane Strain; Infinitesimal Strain; Isotropic Linear Elasticity; Compressible Solid Matrix; and the following assumptions for the fluid phase: Single Phase Fluid; Slightly Compressible Fluid; Newtonian Fluid; Isotermic flow and; No gravitational effects. The set of Differential Equations were approximated via a unified finite volume framework, using a Multipoint Flux Approximation unsing Harmonic Points for both the fluid and solid equations, with a co-located variable arrangement and the Rhie-Chow interpolation, along with a Backwards Euler Scheme for temporal integration. The coupling between pressure and displacement was done via the fixed-strain split. The numerical modeling described in the present work is verified using benchmark problems found in the Poroelasticiy Literature. The results presented shows the numerical model is capable of producing robust and accurate approximated solutions, with both structured and unstructured meshes. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-02-28T12:57:23Z |
dc.date.available.fl_str_mv |
2023-02-28T12:57:23Z |
dc.date.issued.fl_str_mv |
2023-02-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ALBUQUERQUE, Pedro Victor Paixão. Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems. 2023. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal de pernambuco, Recife, 2023. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/49206 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000pmwm |
identifier_str_mv |
ALBUQUERQUE, Pedro Victor Paixão. Finite volume method with muiltipoint flux and stress approximations using harmonic points for solving poroelasticity problems. 2023. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal de pernambuco, Recife, 2023. ark:/64986/001300000pmwm |
url |
https://repositorio.ufpe.br/handle/123456789/49206 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Engenharia Civil |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/49206/4/DISSERTA%c3%87%c3%83O%20Pedro%20Victor%20Paix%c3%a3o%20Albuquerque.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/49206/5/DISSERTA%c3%87%c3%83O%20Pedro%20Victor%20Paix%c3%a3o%20Albuquerque.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/49206/1/DISSERTA%c3%87%c3%83O%20Pedro%20Victor%20Paix%c3%a3o%20Albuquerque.pdf https://repositorio.ufpe.br/bitstream/123456789/49206/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/49206/3/license.txt |
bitstream.checksum.fl_str_mv |
2f02311321fa4975f82722a70ec69364 35363906b7748c5c7c4ea5286814cba6 39b099b5f89178afab942bb8d7e251f2 e39d27027a6cc9cb039ad269a5db8e34 5e89a1613ddc8510c6576f4b23a78973 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172877869121536 |