Some control results for the KdV-type equation

Detalhes bibliográficos
Autor(a) principal: SOUSA, Luan Soares de
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300001103t
Texto Completo: https://repositorio.ufpe.br/handle/123456789/49713
Resumo: This work deals with the controllability and stabilization of fifth-order dispersive equations in bounded and unbounded domains. In the first result, we prove a new type of controllability for a fifth-order dispersive equation that models water waves, which we call overdetermination control problem. Precisely, we can find a control acting on the boundary that provides us that the solutions of the considered problem satisfy an overdetermined integral condition. Additionally, when the control acts internally in the system rather than at the boundary, we are also able to prove a controllability result. In the second result, we extend the overdetermined control property to unbounded domains. This condition is satisfied when the domain of the Kawahara equation is the real line, left half-line, and right half-line. Furthermore, we show a type of exact control associated with the ''mass'' of the Kawahara equation over the right half-line. The third, and last, work deals with the exponential decay of the energy associated with the solutions of the Kawahara equation. Precisely, we prove that the fifth-order dispersive system, with a damping mechanism and delay terms on the boundary, is exponentially stable. We do this using two different procedures: The first result is obtained using the Lyapunov method, which ensures exponential decay. The second result is obtained through the compactness-uniqueness argument, which reduces our study to proving an observability inequality.
id UFPE_c922cb03e72cc1fcf5c6adbf7a707a93
oai_identifier_str oai:repositorio.ufpe.br:123456789/49713
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling SOUSA, Luan Soares dehttp://lattes.cnpq.br/8833037785300175http://lattes.cnpq.br/6438759947793346CAPISTRANO FILHO, Roberto de Almeida2023-04-19T13:55:15Z2023-04-19T13:55:15Z2023-02-17SOUSA, Luan Soares de. Some control results for the KdV-type equation. 2023. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/49713ark:/64986/001300001103tThis work deals with the controllability and stabilization of fifth-order dispersive equations in bounded and unbounded domains. In the first result, we prove a new type of controllability for a fifth-order dispersive equation that models water waves, which we call overdetermination control problem. Precisely, we can find a control acting on the boundary that provides us that the solutions of the considered problem satisfy an overdetermined integral condition. Additionally, when the control acts internally in the system rather than at the boundary, we are also able to prove a controllability result. In the second result, we extend the overdetermined control property to unbounded domains. This condition is satisfied when the domain of the Kawahara equation is the real line, left half-line, and right half-line. Furthermore, we show a type of exact control associated with the ''mass'' of the Kawahara equation over the right half-line. The third, and last, work deals with the exponential decay of the energy associated with the solutions of the Kawahara equation. Precisely, we prove that the fifth-order dispersive system, with a damping mechanism and delay terms on the boundary, is exponentially stable. We do this using two different procedures: The first result is obtained using the Lyapunov method, which ensures exponential decay. The second result is obtained through the compactness-uniqueness argument, which reduces our study to proving an observability inequality.CNPqEste trabalho trata da controlabilidade e estabilização de equações dispersivas de quinta ordem em domínio limitado e ilimitado. No primeiro resultado, provamos um novo tipo de controlabilidade para uma equação dispersiva de quinta ordem que modela ondas de água, o qual chamamos de problema de controle sobredeterminado. Precisamente, somos capazes de encontrar um controle agindo na fronteira que nos fornece que as soluções do problema considerado satisfazem uma condição integral sobredeterminada. Adicionalmente, quando o controle age internamente no sistema, em vez de na fronteira, também somos capazes de provar um resultado de controlabilidade. No segundo resultado, estendemos a propriedade de controle sobredeterminado para domínios ilimitados. Essa condição é satisfeita quando o domínio da equação Kawahara é a reta real, a semi-reta positiva e a semi-reta negativa. Além disso, mostramos um tipo de controle exato associado com a ''massa'' da equação Kawahara sobre a semi-reta positiva. O terceiro, e último, trabalho trata do decaimento exponencial da energia associada às soluções da equação de Kawahara. Precisamente, provamos que o sistema dispersivo de quinta ordem, com termos de amortecimento e delay na fronteira, é exponencialmente estável. Fazemos isto usando dois procedimentos distintos: O primeiro resultado é obtido utilizando o método de Lyapunov, que assegura o decaimento exponencialmente. O segundo resultado, é obtido por meio do argumento de compacidade-unicidade, o qual reduz nosso estudo a provar uma desigualdade de observabilidade.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAnáliseEquação de KawaharaControlabilidadeCondição sobredeterminadaEstabilidadeSome control results for the KdV-type equationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE Luan Soares de Sousa.pdfTESE Luan Soares de Sousa.pdfapplication/pdf1471974https://repositorio.ufpe.br/bitstream/123456789/49713/1/TESE%20Luan%20Soares%20de%20Sousa.pdfa7716cc4bc49070d946a101295f5498cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/49713/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/49713/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTTESE Luan Soares de Sousa.pdf.txtTESE Luan Soares de Sousa.pdf.txtExtracted texttext/plain253387https://repositorio.ufpe.br/bitstream/123456789/49713/4/TESE%20Luan%20Soares%20de%20Sousa.pdf.txt14551bf826c3edf5161394104e751208MD54THUMBNAILTESE Luan Soares de Sousa.pdf.jpgTESE Luan Soares de Sousa.pdf.jpgGenerated Thumbnailimage/jpeg1239https://repositorio.ufpe.br/bitstream/123456789/49713/5/TESE%20Luan%20Soares%20de%20Sousa.pdf.jpgb17c6a99fec74768e9bccf0e87e80d51MD55123456789/497132023-04-20 02:17:22.274oai:repositorio.ufpe.br:123456789/49713VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-04-20T05:17:22Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Some control results for the KdV-type equation
title Some control results for the KdV-type equation
spellingShingle Some control results for the KdV-type equation
SOUSA, Luan Soares de
Análise
Equação de Kawahara
Controlabilidade
Condição sobredeterminada
Estabilidade
title_short Some control results for the KdV-type equation
title_full Some control results for the KdV-type equation
title_fullStr Some control results for the KdV-type equation
title_full_unstemmed Some control results for the KdV-type equation
title_sort Some control results for the KdV-type equation
author SOUSA, Luan Soares de
author_facet SOUSA, Luan Soares de
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/8833037785300175
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6438759947793346
dc.contributor.author.fl_str_mv SOUSA, Luan Soares de
dc.contributor.advisor1.fl_str_mv CAPISTRANO FILHO, Roberto de Almeida
contributor_str_mv CAPISTRANO FILHO, Roberto de Almeida
dc.subject.por.fl_str_mv Análise
Equação de Kawahara
Controlabilidade
Condição sobredeterminada
Estabilidade
topic Análise
Equação de Kawahara
Controlabilidade
Condição sobredeterminada
Estabilidade
description This work deals with the controllability and stabilization of fifth-order dispersive equations in bounded and unbounded domains. In the first result, we prove a new type of controllability for a fifth-order dispersive equation that models water waves, which we call overdetermination control problem. Precisely, we can find a control acting on the boundary that provides us that the solutions of the considered problem satisfy an overdetermined integral condition. Additionally, when the control acts internally in the system rather than at the boundary, we are also able to prove a controllability result. In the second result, we extend the overdetermined control property to unbounded domains. This condition is satisfied when the domain of the Kawahara equation is the real line, left half-line, and right half-line. Furthermore, we show a type of exact control associated with the ''mass'' of the Kawahara equation over the right half-line. The third, and last, work deals with the exponential decay of the energy associated with the solutions of the Kawahara equation. Precisely, we prove that the fifth-order dispersive system, with a damping mechanism and delay terms on the boundary, is exponentially stable. We do this using two different procedures: The first result is obtained using the Lyapunov method, which ensures exponential decay. The second result is obtained through the compactness-uniqueness argument, which reduces our study to proving an observability inequality.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-04-19T13:55:15Z
dc.date.available.fl_str_mv 2023-04-19T13:55:15Z
dc.date.issued.fl_str_mv 2023-02-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUSA, Luan Soares de. Some control results for the KdV-type equation. 2023. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2023.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/49713
dc.identifier.dark.fl_str_mv ark:/64986/001300001103t
identifier_str_mv SOUSA, Luan Soares de. Some control results for the KdV-type equation. 2023. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2023.
ark:/64986/001300001103t
url https://repositorio.ufpe.br/handle/123456789/49713
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Matematica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/49713/1/TESE%20Luan%20Soares%20de%20Sousa.pdf
https://repositorio.ufpe.br/bitstream/123456789/49713/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/49713/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/49713/4/TESE%20Luan%20Soares%20de%20Sousa.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/49713/5/TESE%20Luan%20Soares%20de%20Sousa.pdf.jpg
bitstream.checksum.fl_str_mv a7716cc4bc49070d946a101295f5498c
e39d27027a6cc9cb039ad269a5db8e34
5e89a1613ddc8510c6576f4b23a78973
14551bf826c3edf5161394104e751208
b17c6a99fec74768e9bccf0e87e80d51
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172967803387904