Some control results for the KdV-type equation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300001103t |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/49713 |
Resumo: | This work deals with the controllability and stabilization of fifth-order dispersive equations in bounded and unbounded domains. In the first result, we prove a new type of controllability for a fifth-order dispersive equation that models water waves, which we call overdetermination control problem. Precisely, we can find a control acting on the boundary that provides us that the solutions of the considered problem satisfy an overdetermined integral condition. Additionally, when the control acts internally in the system rather than at the boundary, we are also able to prove a controllability result. In the second result, we extend the overdetermined control property to unbounded domains. This condition is satisfied when the domain of the Kawahara equation is the real line, left half-line, and right half-line. Furthermore, we show a type of exact control associated with the ''mass'' of the Kawahara equation over the right half-line. The third, and last, work deals with the exponential decay of the energy associated with the solutions of the Kawahara equation. Precisely, we prove that the fifth-order dispersive system, with a damping mechanism and delay terms on the boundary, is exponentially stable. We do this using two different procedures: The first result is obtained using the Lyapunov method, which ensures exponential decay. The second result is obtained through the compactness-uniqueness argument, which reduces our study to proving an observability inequality. |
id |
UFPE_c922cb03e72cc1fcf5c6adbf7a707a93 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/49713 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SOUSA, Luan Soares dehttp://lattes.cnpq.br/8833037785300175http://lattes.cnpq.br/6438759947793346CAPISTRANO FILHO, Roberto de Almeida2023-04-19T13:55:15Z2023-04-19T13:55:15Z2023-02-17SOUSA, Luan Soares de. Some control results for the KdV-type equation. 2023. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/49713ark:/64986/001300001103tThis work deals with the controllability and stabilization of fifth-order dispersive equations in bounded and unbounded domains. In the first result, we prove a new type of controllability for a fifth-order dispersive equation that models water waves, which we call overdetermination control problem. Precisely, we can find a control acting on the boundary that provides us that the solutions of the considered problem satisfy an overdetermined integral condition. Additionally, when the control acts internally in the system rather than at the boundary, we are also able to prove a controllability result. In the second result, we extend the overdetermined control property to unbounded domains. This condition is satisfied when the domain of the Kawahara equation is the real line, left half-line, and right half-line. Furthermore, we show a type of exact control associated with the ''mass'' of the Kawahara equation over the right half-line. The third, and last, work deals with the exponential decay of the energy associated with the solutions of the Kawahara equation. Precisely, we prove that the fifth-order dispersive system, with a damping mechanism and delay terms on the boundary, is exponentially stable. We do this using two different procedures: The first result is obtained using the Lyapunov method, which ensures exponential decay. The second result is obtained through the compactness-uniqueness argument, which reduces our study to proving an observability inequality.CNPqEste trabalho trata da controlabilidade e estabilização de equações dispersivas de quinta ordem em domínio limitado e ilimitado. No primeiro resultado, provamos um novo tipo de controlabilidade para uma equação dispersiva de quinta ordem que modela ondas de água, o qual chamamos de problema de controle sobredeterminado. Precisamente, somos capazes de encontrar um controle agindo na fronteira que nos fornece que as soluções do problema considerado satisfazem uma condição integral sobredeterminada. Adicionalmente, quando o controle age internamente no sistema, em vez de na fronteira, também somos capazes de provar um resultado de controlabilidade. No segundo resultado, estendemos a propriedade de controle sobredeterminado para domínios ilimitados. Essa condição é satisfeita quando o domínio da equação Kawahara é a reta real, a semi-reta positiva e a semi-reta negativa. Além disso, mostramos um tipo de controle exato associado com a ''massa'' da equação Kawahara sobre a semi-reta positiva. O terceiro, e último, trabalho trata do decaimento exponencial da energia associada às soluções da equação de Kawahara. Precisamente, provamos que o sistema dispersivo de quinta ordem, com termos de amortecimento e delay na fronteira, é exponencialmente estável. Fazemos isto usando dois procedimentos distintos: O primeiro resultado é obtido utilizando o método de Lyapunov, que assegura o decaimento exponencialmente. O segundo resultado, é obtido por meio do argumento de compacidade-unicidade, o qual reduz nosso estudo a provar uma desigualdade de observabilidade.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAnáliseEquação de KawaharaControlabilidadeCondição sobredeterminadaEstabilidadeSome control results for the KdV-type equationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE Luan Soares de Sousa.pdfTESE Luan Soares de Sousa.pdfapplication/pdf1471974https://repositorio.ufpe.br/bitstream/123456789/49713/1/TESE%20Luan%20Soares%20de%20Sousa.pdfa7716cc4bc49070d946a101295f5498cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/49713/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/49713/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTTESE Luan Soares de Sousa.pdf.txtTESE Luan Soares de Sousa.pdf.txtExtracted texttext/plain253387https://repositorio.ufpe.br/bitstream/123456789/49713/4/TESE%20Luan%20Soares%20de%20Sousa.pdf.txt14551bf826c3edf5161394104e751208MD54THUMBNAILTESE Luan Soares de Sousa.pdf.jpgTESE Luan Soares de Sousa.pdf.jpgGenerated Thumbnailimage/jpeg1239https://repositorio.ufpe.br/bitstream/123456789/49713/5/TESE%20Luan%20Soares%20de%20Sousa.pdf.jpgb17c6a99fec74768e9bccf0e87e80d51MD55123456789/497132023-04-20 02:17:22.274oai:repositorio.ufpe.br:123456789/49713VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-04-20T05:17:22Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Some control results for the KdV-type equation |
title |
Some control results for the KdV-type equation |
spellingShingle |
Some control results for the KdV-type equation SOUSA, Luan Soares de Análise Equação de Kawahara Controlabilidade Condição sobredeterminada Estabilidade |
title_short |
Some control results for the KdV-type equation |
title_full |
Some control results for the KdV-type equation |
title_fullStr |
Some control results for the KdV-type equation |
title_full_unstemmed |
Some control results for the KdV-type equation |
title_sort |
Some control results for the KdV-type equation |
author |
SOUSA, Luan Soares de |
author_facet |
SOUSA, Luan Soares de |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/8833037785300175 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6438759947793346 |
dc.contributor.author.fl_str_mv |
SOUSA, Luan Soares de |
dc.contributor.advisor1.fl_str_mv |
CAPISTRANO FILHO, Roberto de Almeida |
contributor_str_mv |
CAPISTRANO FILHO, Roberto de Almeida |
dc.subject.por.fl_str_mv |
Análise Equação de Kawahara Controlabilidade Condição sobredeterminada Estabilidade |
topic |
Análise Equação de Kawahara Controlabilidade Condição sobredeterminada Estabilidade |
description |
This work deals with the controllability and stabilization of fifth-order dispersive equations in bounded and unbounded domains. In the first result, we prove a new type of controllability for a fifth-order dispersive equation that models water waves, which we call overdetermination control problem. Precisely, we can find a control acting on the boundary that provides us that the solutions of the considered problem satisfy an overdetermined integral condition. Additionally, when the control acts internally in the system rather than at the boundary, we are also able to prove a controllability result. In the second result, we extend the overdetermined control property to unbounded domains. This condition is satisfied when the domain of the Kawahara equation is the real line, left half-line, and right half-line. Furthermore, we show a type of exact control associated with the ''mass'' of the Kawahara equation over the right half-line. The third, and last, work deals with the exponential decay of the energy associated with the solutions of the Kawahara equation. Precisely, we prove that the fifth-order dispersive system, with a damping mechanism and delay terms on the boundary, is exponentially stable. We do this using two different procedures: The first result is obtained using the Lyapunov method, which ensures exponential decay. The second result is obtained through the compactness-uniqueness argument, which reduces our study to proving an observability inequality. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-04-19T13:55:15Z |
dc.date.available.fl_str_mv |
2023-04-19T13:55:15Z |
dc.date.issued.fl_str_mv |
2023-02-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SOUSA, Luan Soares de. Some control results for the KdV-type equation. 2023. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2023. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/49713 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300001103t |
identifier_str_mv |
SOUSA, Luan Soares de. Some control results for the KdV-type equation. 2023. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2023. ark:/64986/001300001103t |
url |
https://repositorio.ufpe.br/handle/123456789/49713 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Matematica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/49713/1/TESE%20Luan%20Soares%20de%20Sousa.pdf https://repositorio.ufpe.br/bitstream/123456789/49713/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/49713/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/49713/4/TESE%20Luan%20Soares%20de%20Sousa.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/49713/5/TESE%20Luan%20Soares%20de%20Sousa.pdf.jpg |
bitstream.checksum.fl_str_mv |
a7716cc4bc49070d946a101295f5498c e39d27027a6cc9cb039ad269a5db8e34 5e89a1613ddc8510c6576f4b23a78973 14551bf826c3edf5161394104e751208 b17c6a99fec74768e9bccf0e87e80d51 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172967803387904 |