Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas

Detalhes bibliográficos
Autor(a) principal: COSTA, Diogo Cavalcanti
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000hqmn
Texto Completo: https://repositorio.ufpe.br/handle/123456789/18620
Resumo: Desde os anos 1960, foram criadas inúmeras técnicas para segmentação de imagens, contudo poucas se aproximam do nível de desempenho humano, sendo essas computacionalmente custosas e inadequadas para aplicação em tempo real. Portanto, nesta tese é apresentada uma técnica de segmentação de baixo custo computacional, baseada em descontinuidades e em multirresolução, voltada à detecção de contornos de objetos em imagens naturais – fotografias do mundo real. A estrutura da técnica proposta é dividida em cinco etapas. Na primeira, atributos de cor e foco são realçados na imagem de entrada. O mapeamento de cor realça as diferenças de cor entre os canais RGB e propicia a detecção de bordas entre os canais de cor por operadores de gradiente. Dois modelos de cor de diferença cromática, RhGhBh e LgC, são propostos para esse fim. Também é proposta a transformada de decomposição de cor que segmenta a escala de cor RGB em canais independentes, isolando as cores aditivas e subtrativas, e os tons de cinza. Assim, é possível mensurar a variação local de cada cor para criar um mapeamento das regiões em foco. Na segunda etapa, uma filtragem morfológica para supressão de texturas suaviza as mudanças abruptas de cor no interior das mesmas, possibilitando a identificação de seus contornos e diminuindo a falsa identificação de bordas internas. Na terceira etapa, oito máscaras orientadas, batizadas de máscaras de detecção de contornos, são usadas para calcular o gradiente local, realçando os contornos dos objetos em detrimento de suas bordas internas. Na quarta etapa, um afinamento em tons de cinza é realizado por meio de um empilhamento topológico das bordas erodidas e suavizadas, no qual os pixels de bordas maximamente centralizados são isolados e afinados morfologicamente. Por fim, na quinta etapa, a intensidade das bordas é corrigida função do gradiente local e da densidade local das bordas, realçando os contornos dos objetos. Comparações com técnicas de segmentação recentes e clássicas são conduzidas com auxílio do Berkeley Segmentation Dataset and Benchmark. Os resultados obtidos posicionam a técnica proposta em quinto lugar no Benchmark, com tempo de processamento inferior a 0,5% do tempo das técnicas melhor classificadas, sendo adequada para uso em tempo real.
id UFPE_cd577f044de273aa34b99d2370002fc8
oai_identifier_str oai:repositorio.ufpe.br:123456789/18620
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling COSTA, Diogo Cavalcantihttp://lattes.cnpq.br/8414130253743623http://lattes.cnpq.br/2248591013863307MELLO, Carlos Alexandre Barros de2017-04-24T14:27:21Z2017-04-24T14:27:21Z2015-03-02https://repositorio.ufpe.br/handle/123456789/18620ark:/64986/001300000hqmnDesde os anos 1960, foram criadas inúmeras técnicas para segmentação de imagens, contudo poucas se aproximam do nível de desempenho humano, sendo essas computacionalmente custosas e inadequadas para aplicação em tempo real. Portanto, nesta tese é apresentada uma técnica de segmentação de baixo custo computacional, baseada em descontinuidades e em multirresolução, voltada à detecção de contornos de objetos em imagens naturais – fotografias do mundo real. A estrutura da técnica proposta é dividida em cinco etapas. Na primeira, atributos de cor e foco são realçados na imagem de entrada. O mapeamento de cor realça as diferenças de cor entre os canais RGB e propicia a detecção de bordas entre os canais de cor por operadores de gradiente. Dois modelos de cor de diferença cromática, RhGhBh e LgC, são propostos para esse fim. Também é proposta a transformada de decomposição de cor que segmenta a escala de cor RGB em canais independentes, isolando as cores aditivas e subtrativas, e os tons de cinza. Assim, é possível mensurar a variação local de cada cor para criar um mapeamento das regiões em foco. Na segunda etapa, uma filtragem morfológica para supressão de texturas suaviza as mudanças abruptas de cor no interior das mesmas, possibilitando a identificação de seus contornos e diminuindo a falsa identificação de bordas internas. Na terceira etapa, oito máscaras orientadas, batizadas de máscaras de detecção de contornos, são usadas para calcular o gradiente local, realçando os contornos dos objetos em detrimento de suas bordas internas. Na quarta etapa, um afinamento em tons de cinza é realizado por meio de um empilhamento topológico das bordas erodidas e suavizadas, no qual os pixels de bordas maximamente centralizados são isolados e afinados morfologicamente. Por fim, na quinta etapa, a intensidade das bordas é corrigida função do gradiente local e da densidade local das bordas, realçando os contornos dos objetos. Comparações com técnicas de segmentação recentes e clássicas são conduzidas com auxílio do Berkeley Segmentation Dataset and Benchmark. Os resultados obtidos posicionam a técnica proposta em quinto lugar no Benchmark, com tempo de processamento inferior a 0,5% do tempo das técnicas melhor classificadas, sendo adequada para uso em tempo real.CNPQSince the 1960’s, numerous image segmentation techniques were developed, however only a few approach human level segmentation, being computationally costly and inadequate to real time applications. Therefore, this Thesis presents a low computational cost multi-resolution and edge-based image segmentation technique for objects’ contour detection in natural images – real world scenes photographs. The proposed technique’s framework is divided into five steps. First, color and focus features are mapped from the input image. The color mapping enhances the color differences between RGB channels, allowing the inter-channel colors edge detection by gradient operators. Two chromatic difference color models are proposed, RhGhBh and LgC. The color decomposition transform is also proposed, which is able to segment the RGB color scale in independent channels, isolating the additive and subtractive colors, and the shades of gray. The transform allows the measurement of the local variation within each color, thus, producing the image´s focus map. In the second step, a morphological texture suppression filtering smoothes abrupt color changes inside textures, allowing textures’ outer edges detection and decreasing the false identification of texture inner edges as objects’ contours. In the third step, eight oriented masks, called contour detection masks, are used to calculate the local gradient, enhancing the objects’ contours over their inner edges. In the fourth step, a grayscale thinning is performed through a topological stacking of eroded and smoothed edges, where the maximally centered edge pixels are isolated and morphologically thinned. Finally, in the fifth step, the edges’ intensities are corrected to reflect the local gradient and the local edges’ density, allowing better identification of objects’ contours. Comparisons with recent and classic segmentation techniques are conducted by the Berkeley Segmentation Dataset and Benchmark. The results rank the proposed segmentation in fith position in the Benchmark, with a processing time below 0.5% of the better ranked techniques, being suitable for real-time applications.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessSegmentação de ImagensDetecção de ContornosOperadores de GradienteModelos de CorFocoAfinamento em Tons de CinzaSupressão de TexturasImage SegmentationContour DetectionGradient OperatorsColor ModelsFocusGrayscale ThinningTexture SuppressionSegmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE__DIOGO_CAVALCANTI_COSTA.pdf.jpgTESE__DIOGO_CAVALCANTI_COSTA.pdf.jpgGenerated Thumbnailimage/jpeg1368https://repositorio.ufpe.br/bitstream/123456789/18620/5/TESE__DIOGO_CAVALCANTI_COSTA.pdf.jpg875072868a875de2ef69af2ea4628c5dMD55ORIGINALTESE__DIOGO_CAVALCANTI_COSTA.pdfTESE__DIOGO_CAVALCANTI_COSTA.pdfapplication/pdf8696014https://repositorio.ufpe.br/bitstream/123456789/18620/1/TESE__DIOGO_CAVALCANTI_COSTA.pdf6ecb7de16968f61db789940caeae149eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/18620/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/18620/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTESE__DIOGO_CAVALCANTI_COSTA.pdf.txtTESE__DIOGO_CAVALCANTI_COSTA.pdf.txtExtracted texttext/plain338526https://repositorio.ufpe.br/bitstream/123456789/18620/4/TESE__DIOGO_CAVALCANTI_COSTA.pdf.txt91d630c625d8d870a992d9bd5ff74bb2MD54123456789/186202019-10-25 04:28:15.953oai:repositorio.ufpe.br:123456789/18620TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:28:15Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas
title Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas
spellingShingle Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas
COSTA, Diogo Cavalcanti
Segmentação de Imagens
Detecção de Contornos
Operadores de Gradiente
Modelos de Cor
Foco
Afinamento em Tons de Cinza
Supressão de Texturas
Image Segmentation
Contour Detection
Gradient Operators
Color Models
Focus
Grayscale Thinning
Texture Suppression
title_short Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas
title_full Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas
title_fullStr Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas
title_full_unstemmed Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas
title_sort Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas
author COSTA, Diogo Cavalcanti
author_facet COSTA, Diogo Cavalcanti
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/8414130253743623
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2248591013863307
dc.contributor.author.fl_str_mv COSTA, Diogo Cavalcanti
dc.contributor.advisor1.fl_str_mv MELLO, Carlos Alexandre Barros de
contributor_str_mv MELLO, Carlos Alexandre Barros de
dc.subject.por.fl_str_mv Segmentação de Imagens
Detecção de Contornos
Operadores de Gradiente
Modelos de Cor
Foco
Afinamento em Tons de Cinza
Supressão de Texturas
Image Segmentation
Contour Detection
Gradient Operators
Color Models
Focus
Grayscale Thinning
Texture Suppression
topic Segmentação de Imagens
Detecção de Contornos
Operadores de Gradiente
Modelos de Cor
Foco
Afinamento em Tons de Cinza
Supressão de Texturas
Image Segmentation
Contour Detection
Gradient Operators
Color Models
Focus
Grayscale Thinning
Texture Suppression
description Desde os anos 1960, foram criadas inúmeras técnicas para segmentação de imagens, contudo poucas se aproximam do nível de desempenho humano, sendo essas computacionalmente custosas e inadequadas para aplicação em tempo real. Portanto, nesta tese é apresentada uma técnica de segmentação de baixo custo computacional, baseada em descontinuidades e em multirresolução, voltada à detecção de contornos de objetos em imagens naturais – fotografias do mundo real. A estrutura da técnica proposta é dividida em cinco etapas. Na primeira, atributos de cor e foco são realçados na imagem de entrada. O mapeamento de cor realça as diferenças de cor entre os canais RGB e propicia a detecção de bordas entre os canais de cor por operadores de gradiente. Dois modelos de cor de diferença cromática, RhGhBh e LgC, são propostos para esse fim. Também é proposta a transformada de decomposição de cor que segmenta a escala de cor RGB em canais independentes, isolando as cores aditivas e subtrativas, e os tons de cinza. Assim, é possível mensurar a variação local de cada cor para criar um mapeamento das regiões em foco. Na segunda etapa, uma filtragem morfológica para supressão de texturas suaviza as mudanças abruptas de cor no interior das mesmas, possibilitando a identificação de seus contornos e diminuindo a falsa identificação de bordas internas. Na terceira etapa, oito máscaras orientadas, batizadas de máscaras de detecção de contornos, são usadas para calcular o gradiente local, realçando os contornos dos objetos em detrimento de suas bordas internas. Na quarta etapa, um afinamento em tons de cinza é realizado por meio de um empilhamento topológico das bordas erodidas e suavizadas, no qual os pixels de bordas maximamente centralizados são isolados e afinados morfologicamente. Por fim, na quinta etapa, a intensidade das bordas é corrigida função do gradiente local e da densidade local das bordas, realçando os contornos dos objetos. Comparações com técnicas de segmentação recentes e clássicas são conduzidas com auxílio do Berkeley Segmentation Dataset and Benchmark. Os resultados obtidos posicionam a técnica proposta em quinto lugar no Benchmark, com tempo de processamento inferior a 0,5% do tempo das técnicas melhor classificadas, sendo adequada para uso em tempo real.
publishDate 2015
dc.date.issued.fl_str_mv 2015-03-02
dc.date.accessioned.fl_str_mv 2017-04-24T14:27:21Z
dc.date.available.fl_str_mv 2017-04-24T14:27:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/18620
dc.identifier.dark.fl_str_mv ark:/64986/001300000hqmn
url https://repositorio.ufpe.br/handle/123456789/18620
identifier_str_mv ark:/64986/001300000hqmn
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/18620/5/TESE__DIOGO_CAVALCANTI_COSTA.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/18620/1/TESE__DIOGO_CAVALCANTI_COSTA.pdf
https://repositorio.ufpe.br/bitstream/123456789/18620/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/18620/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/18620/4/TESE__DIOGO_CAVALCANTI_COSTA.pdf.txt
bitstream.checksum.fl_str_mv 875072868a875de2ef69af2ea4628c5d
6ecb7de16968f61db789940caeae149e
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
91d630c625d8d870a992d9bd5ff74bb2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172830624481280