Termografia e inteligência artificial na detecção de falhas em transformadores
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000kmvb |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/28109 |
Resumo: | A análise dos gases dissolvidos no óleo isolante em transformadores de potência refrigerados a óleo é uma técnica bastante difundida para detecção de falhas incipientes. Contudo, esta técnica envolve procedimentos de segurança para a coleta das amostras de óleo, prazos de resposta dos laboratórios e em alguns casos há a necessidade de se retirar o transformador de operação. Retirar um transformador de operação em determinadas situações pode se tornar muito onerosa, pois há ambientes de produção que devem funcionar ininterruptamente e paradas como esta representam perda financeira. Termografia Infravermelha é uma técnica não destrutiva de medição de temperatura comumente utilizada para detectar anomalias e predizer possíveis falhas sem interromper a operação do sistema. Este trabalho apresenta estudos com o uso da medição infravermelha de temperatura para detectar falhas incipientes no transformador baseada na Análise dos Gases Dissolvidos no Óleo Isolante. A metodologia desse estudo apresenta o uso sistemas inteligentes para analisar as temperaturas faciais do transformador e detectar falhas incipientes. Os resultados obtidos neste trabalho apresentam 86% e 83% de acertos de classificação utilizando Redes Neurais Artificiais e Lógica Fuzzy, respectivamente. |
id |
UFPE_d019a7e8c7a8ae215ece39bd01843793 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/28109 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SANTOS, Gustavo Maciel doshttp://lattes.cnpq.br/9281109196588128http://lattes.cnpq.br/0731639653204720AQUINO, Ronaldo Ribeiro Barbosa deLIRA, Milde Maria da Silva2018-12-07T17:50:33Z2018-12-07T17:50:33Z2017-08-30https://repositorio.ufpe.br/handle/123456789/28109ark:/64986/001300000kmvbA análise dos gases dissolvidos no óleo isolante em transformadores de potência refrigerados a óleo é uma técnica bastante difundida para detecção de falhas incipientes. Contudo, esta técnica envolve procedimentos de segurança para a coleta das amostras de óleo, prazos de resposta dos laboratórios e em alguns casos há a necessidade de se retirar o transformador de operação. Retirar um transformador de operação em determinadas situações pode se tornar muito onerosa, pois há ambientes de produção que devem funcionar ininterruptamente e paradas como esta representam perda financeira. Termografia Infravermelha é uma técnica não destrutiva de medição de temperatura comumente utilizada para detectar anomalias e predizer possíveis falhas sem interromper a operação do sistema. Este trabalho apresenta estudos com o uso da medição infravermelha de temperatura para detectar falhas incipientes no transformador baseada na Análise dos Gases Dissolvidos no Óleo Isolante. A metodologia desse estudo apresenta o uso sistemas inteligentes para analisar as temperaturas faciais do transformador e detectar falhas incipientes. Os resultados obtidos neste trabalho apresentam 86% e 83% de acertos de classificação utilizando Redes Neurais Artificiais e Lógica Fuzzy, respectivamente.Dissolved Gas Analysis of insulating oil in refrigerated power transformer oil is a widespread technique for detecting incipient faults. However, this technique involves safety procedures for the collection of oil samples, laboratory response time and, in some cases, removing the transformer from operation. Removing a transformer from operation in certain situations can become very costly as there are production environments that must run uninterrupted so that stoppages such as this represent financial loss. Infrared Thermography is a non-destructive temperature measurement technique commonly used to detect anomalies and predict possible faults without disrupting system operation. This paper presents studies based on the use of infrared temperature measurement to detect incipient faults in transformers through Dissolved Gas Analysis of the insulating oil. This study’s methodology uses intelligent systems to analyse transformer face temperatures and detect incipient faults. The results obtained in this work present 86 and 83% of classification correctness using Artificial Neural Networks and Fuzzy Logic, respectively.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia EletricaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEngenharia ElétricaRedes neurais artificiaisLógica fuzzyAnálise de gases dissolvidosTransformadorInfravermelhoTermografia e inteligência artificial na detecção de falhas em transformadoresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Gustavo Maciel dos Santos.pdf.jpgTESE Gustavo Maciel dos Santos.pdf.jpgGenerated Thumbnailimage/jpeg1239https://repositorio.ufpe.br/bitstream/123456789/28109/5/TESE%20Gustavo%20Maciel%20dos%20Santos.pdf.jpgc1be2d1e939790e32155a07548b439edMD55ORIGINALTESE Gustavo Maciel dos Santos.pdfTESE Gustavo Maciel dos Santos.pdfapplication/pdf2134800https://repositorio.ufpe.br/bitstream/123456789/28109/1/TESE%20Gustavo%20Maciel%20dos%20Santos.pdf6eb75a32ac84001b2d967575bb21aed7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/28109/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/28109/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTESE Gustavo Maciel dos Santos.pdf.txtTESE Gustavo Maciel dos Santos.pdf.txtExtracted texttext/plain168545https://repositorio.ufpe.br/bitstream/123456789/28109/4/TESE%20Gustavo%20Maciel%20dos%20Santos.pdf.txta5a007f226ad12b93e196b9ed40647feMD54123456789/281092019-10-25 09:28:59.933oai:repositorio.ufpe.br:123456789/28109TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T12:28:59Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Termografia e inteligência artificial na detecção de falhas em transformadores |
title |
Termografia e inteligência artificial na detecção de falhas em transformadores |
spellingShingle |
Termografia e inteligência artificial na detecção de falhas em transformadores SANTOS, Gustavo Maciel dos Engenharia Elétrica Redes neurais artificiais Lógica fuzzy Análise de gases dissolvidos Transformador Infravermelho |
title_short |
Termografia e inteligência artificial na detecção de falhas em transformadores |
title_full |
Termografia e inteligência artificial na detecção de falhas em transformadores |
title_fullStr |
Termografia e inteligência artificial na detecção de falhas em transformadores |
title_full_unstemmed |
Termografia e inteligência artificial na detecção de falhas em transformadores |
title_sort |
Termografia e inteligência artificial na detecção de falhas em transformadores |
author |
SANTOS, Gustavo Maciel dos |
author_facet |
SANTOS, Gustavo Maciel dos |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9281109196588128 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/0731639653204720 |
dc.contributor.author.fl_str_mv |
SANTOS, Gustavo Maciel dos |
dc.contributor.advisor1.fl_str_mv |
AQUINO, Ronaldo Ribeiro Barbosa de |
dc.contributor.advisor-co1.fl_str_mv |
LIRA, Milde Maria da Silva |
contributor_str_mv |
AQUINO, Ronaldo Ribeiro Barbosa de LIRA, Milde Maria da Silva |
dc.subject.por.fl_str_mv |
Engenharia Elétrica Redes neurais artificiais Lógica fuzzy Análise de gases dissolvidos Transformador Infravermelho |
topic |
Engenharia Elétrica Redes neurais artificiais Lógica fuzzy Análise de gases dissolvidos Transformador Infravermelho |
description |
A análise dos gases dissolvidos no óleo isolante em transformadores de potência refrigerados a óleo é uma técnica bastante difundida para detecção de falhas incipientes. Contudo, esta técnica envolve procedimentos de segurança para a coleta das amostras de óleo, prazos de resposta dos laboratórios e em alguns casos há a necessidade de se retirar o transformador de operação. Retirar um transformador de operação em determinadas situações pode se tornar muito onerosa, pois há ambientes de produção que devem funcionar ininterruptamente e paradas como esta representam perda financeira. Termografia Infravermelha é uma técnica não destrutiva de medição de temperatura comumente utilizada para detectar anomalias e predizer possíveis falhas sem interromper a operação do sistema. Este trabalho apresenta estudos com o uso da medição infravermelha de temperatura para detectar falhas incipientes no transformador baseada na Análise dos Gases Dissolvidos no Óleo Isolante. A metodologia desse estudo apresenta o uso sistemas inteligentes para analisar as temperaturas faciais do transformador e detectar falhas incipientes. Os resultados obtidos neste trabalho apresentam 86% e 83% de acertos de classificação utilizando Redes Neurais Artificiais e Lógica Fuzzy, respectivamente. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-08-30 |
dc.date.accessioned.fl_str_mv |
2018-12-07T17:50:33Z |
dc.date.available.fl_str_mv |
2018-12-07T17:50:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/28109 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000kmvb |
url |
https://repositorio.ufpe.br/handle/123456789/28109 |
identifier_str_mv |
ark:/64986/001300000kmvb |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Engenharia Eletrica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/28109/5/TESE%20Gustavo%20Maciel%20dos%20Santos.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/28109/1/TESE%20Gustavo%20Maciel%20dos%20Santos.pdf https://repositorio.ufpe.br/bitstream/123456789/28109/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/28109/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/28109/4/TESE%20Gustavo%20Maciel%20dos%20Santos.pdf.txt |
bitstream.checksum.fl_str_mv |
c1be2d1e939790e32155a07548b439ed 6eb75a32ac84001b2d967575bb21aed7 e39d27027a6cc9cb039ad269a5db8e34 4b8a02c7f2818eaf00dcf2260dd5eb08 a5a007f226ad12b93e196b9ed40647fe |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172849064738816 |