Combinação de Características Para Segmentação em Transcrição de Locutores
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000nf9k |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/11560 |
Resumo: | Neste trabalho é apresentada uma abordagem de combinação de características para a etapa de segmentação de locutores em um sistema de transcrição de locutores. Esta abordagem utiliza diferentes características acústicas extraídas da fonte de áudio com o objetivo de combinar as suas capacidades de discriminação para diferentes tipos de sons, aumentando assim, a precisão da segmentação. O Critério de Informação Bayesiana (BIC - Bayesian Information Criterion) é usado como uma medida de distância para verificar a propensão de junção de dois segmentos do áudio. Uma Rede Neural Artificial (RNA) combina as respostas obtidas por cada característica após a aplicação de um algoritmo que detecta se há mudança em um trecho do áudio. Os índices de tempo obtidos são usados como entrada da rede neural que estima o ponto de mudança do locutor no trecho de áudio. Um sistema de transcrição de locutores que inclui a abordagem proposta é desenvolvido para avaliar e comparar os resultados com os do sistema de transcrição que utiliza a abordagem clássica de segmentação de locutores Window-Growing de Chen e Gopalakrishnan, aplicada às diferentes características acústicas adotadas neste trabalho. Nos experimentos com o sistema de transcrição de locutores, uma base artificial contendo amostras com vários locutores é usada. A avaliação dos resultados da etapa de segmentação do sistema mostra um aprimoramento em ambas as taxas de perda de detecção (MDR - Miss Detection Rate) e de falsos alarmes (FAR - False Alarm Rate) se comparadas à abordagem Window-Growing. A avaliação dos resultados na etapa de agrupamento dos locutores mostra uma melhora significativa na pureza dos grupos de locutores formados, calculada como o percentual de amostras de um mesmo locutor no grupo, demostrando que os mesmos são mais homogêneos. |
id |
UFPE_d0df0466c772ca5f03c366a9601a7c41 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/11560 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Neri, Leonardo ValerianoRen, Tsang Ing 2015-03-09T19:16:26Z2015-03-09T19:16:26Z2014-02-21https://repositorio.ufpe.br/handle/123456789/11560ark:/64986/001300000nf9kNeste trabalho é apresentada uma abordagem de combinação de características para a etapa de segmentação de locutores em um sistema de transcrição de locutores. Esta abordagem utiliza diferentes características acústicas extraídas da fonte de áudio com o objetivo de combinar as suas capacidades de discriminação para diferentes tipos de sons, aumentando assim, a precisão da segmentação. O Critério de Informação Bayesiana (BIC - Bayesian Information Criterion) é usado como uma medida de distância para verificar a propensão de junção de dois segmentos do áudio. Uma Rede Neural Artificial (RNA) combina as respostas obtidas por cada característica após a aplicação de um algoritmo que detecta se há mudança em um trecho do áudio. Os índices de tempo obtidos são usados como entrada da rede neural que estima o ponto de mudança do locutor no trecho de áudio. Um sistema de transcrição de locutores que inclui a abordagem proposta é desenvolvido para avaliar e comparar os resultados com os do sistema de transcrição que utiliza a abordagem clássica de segmentação de locutores Window-Growing de Chen e Gopalakrishnan, aplicada às diferentes características acústicas adotadas neste trabalho. Nos experimentos com o sistema de transcrição de locutores, uma base artificial contendo amostras com vários locutores é usada. A avaliação dos resultados da etapa de segmentação do sistema mostra um aprimoramento em ambas as taxas de perda de detecção (MDR - Miss Detection Rate) e de falsos alarmes (FAR - False Alarm Rate) se comparadas à abordagem Window-Growing. A avaliação dos resultados na etapa de agrupamento dos locutores mostra uma melhora significativa na pureza dos grupos de locutores formados, calculada como o percentual de amostras de um mesmo locutor no grupo, demostrando que os mesmos são mais homogêneos.porUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessBayesian information criterionSegmentação de locutoresCombinação de característicasRedes neurais artificiaisCombinação de Características Para Segmentação em Transcrição de Locutoresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Leonardo Valeriano Neri.pdf.jpgDISSERTAÇÃO Leonardo Valeriano Neri.pdf.jpgGenerated Thumbnailimage/jpeg1353https://repositorio.ufpe.br/bitstream/123456789/11560/5/DISSERTA%c3%87%c3%83O%20Leonardo%20Valeriano%20Neri.pdf.jpgac86b4139f9c373786be1860bab0955cMD55ORIGINALDISSERTAÇÃO Leonardo Valeriano Neri.pdfDISSERTAÇÃO Leonardo Valeriano Neri.pdfapplication/pdf1395784https://repositorio.ufpe.br/bitstream/123456789/11560/1/DISSERTA%c3%87%c3%83O%20Leonardo%20Valeriano%20Neri.pdff38db7dc7191951459624c0348b93e63MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/11560/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/11560/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDISSERTAÇÃO Leonardo Valeriano Neri.pdf.txtDISSERTAÇÃO Leonardo Valeriano Neri.pdf.txtExtracted texttext/plain133014https://repositorio.ufpe.br/bitstream/123456789/11560/4/DISSERTA%c3%87%c3%83O%20Leonardo%20Valeriano%20Neri.pdf.txt1e85c812a9b2dbd57a92fd7fe3b1e9b4MD54123456789/115602019-10-25 04:43:36.186oai:repositorio.ufpe.br:123456789/11560TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:43:36Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Combinação de Características Para Segmentação em Transcrição de Locutores |
title |
Combinação de Características Para Segmentação em Transcrição de Locutores |
spellingShingle |
Combinação de Características Para Segmentação em Transcrição de Locutores Neri, Leonardo Valeriano Bayesian information criterion Segmentação de locutores Combinação de características Redes neurais artificiais |
title_short |
Combinação de Características Para Segmentação em Transcrição de Locutores |
title_full |
Combinação de Características Para Segmentação em Transcrição de Locutores |
title_fullStr |
Combinação de Características Para Segmentação em Transcrição de Locutores |
title_full_unstemmed |
Combinação de Características Para Segmentação em Transcrição de Locutores |
title_sort |
Combinação de Características Para Segmentação em Transcrição de Locutores |
author |
Neri, Leonardo Valeriano |
author_facet |
Neri, Leonardo Valeriano |
author_role |
author |
dc.contributor.author.fl_str_mv |
Neri, Leonardo Valeriano |
dc.contributor.advisor1.fl_str_mv |
Ren, Tsang Ing |
contributor_str_mv |
Ren, Tsang Ing |
dc.subject.por.fl_str_mv |
Bayesian information criterion Segmentação de locutores Combinação de características Redes neurais artificiais |
topic |
Bayesian information criterion Segmentação de locutores Combinação de características Redes neurais artificiais |
description |
Neste trabalho é apresentada uma abordagem de combinação de características para a etapa de segmentação de locutores em um sistema de transcrição de locutores. Esta abordagem utiliza diferentes características acústicas extraídas da fonte de áudio com o objetivo de combinar as suas capacidades de discriminação para diferentes tipos de sons, aumentando assim, a precisão da segmentação. O Critério de Informação Bayesiana (BIC - Bayesian Information Criterion) é usado como uma medida de distância para verificar a propensão de junção de dois segmentos do áudio. Uma Rede Neural Artificial (RNA) combina as respostas obtidas por cada característica após a aplicação de um algoritmo que detecta se há mudança em um trecho do áudio. Os índices de tempo obtidos são usados como entrada da rede neural que estima o ponto de mudança do locutor no trecho de áudio. Um sistema de transcrição de locutores que inclui a abordagem proposta é desenvolvido para avaliar e comparar os resultados com os do sistema de transcrição que utiliza a abordagem clássica de segmentação de locutores Window-Growing de Chen e Gopalakrishnan, aplicada às diferentes características acústicas adotadas neste trabalho. Nos experimentos com o sistema de transcrição de locutores, uma base artificial contendo amostras com vários locutores é usada. A avaliação dos resultados da etapa de segmentação do sistema mostra um aprimoramento em ambas as taxas de perda de detecção (MDR - Miss Detection Rate) e de falsos alarmes (FAR - False Alarm Rate) se comparadas à abordagem Window-Growing. A avaliação dos resultados na etapa de agrupamento dos locutores mostra uma melhora significativa na pureza dos grupos de locutores formados, calculada como o percentual de amostras de um mesmo locutor no grupo, demostrando que os mesmos são mais homogêneos. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-02-21 |
dc.date.accessioned.fl_str_mv |
2015-03-09T19:16:26Z |
dc.date.available.fl_str_mv |
2015-03-09T19:16:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/11560 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000nf9k |
url |
https://repositorio.ufpe.br/handle/123456789/11560 |
identifier_str_mv |
ark:/64986/001300000nf9k |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/11560/5/DISSERTA%c3%87%c3%83O%20Leonardo%20Valeriano%20Neri.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/11560/1/DISSERTA%c3%87%c3%83O%20Leonardo%20Valeriano%20Neri.pdf https://repositorio.ufpe.br/bitstream/123456789/11560/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/11560/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/11560/4/DISSERTA%c3%87%c3%83O%20Leonardo%20Valeriano%20Neri.pdf.txt |
bitstream.checksum.fl_str_mv |
ac86b4139f9c373786be1860bab0955c f38db7dc7191951459624c0348b93e63 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 1e85c812a9b2dbd57a92fd7fe3b1e9b4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172866422865920 |