Novel and faster ways for solving semi-markov processes: mathematical and numerical issues

Detalhes bibliográficos
Autor(a) principal: MOURA, Márcio José das Chagas
Data de Publicação: 2009
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/00130000006mk
Texto Completo: https://repositorio.ufpe.br/handle/123456789/4939
Resumo: Processos semi-Markovianos (SMP) contínuos no tempo são importantes ferramentas estocásticas para modelagem de métricas de confiabilidade ao longo do tempo para sistemas para os quais o comportamento futuro depende dos estados presente e seguinte assim como do tempo de residência. O método clássico para resolver as probabilidades intervalares de transição de SMP consiste em aplicar diretamente um método geral de quadratura às equações integrais. Entretanto, esta técnica possui um esforço computacional considerável, isto é, N2 equações integrais conjugadas devem ser resolvidas, onde N é o número de estados. Portanto, esta tese propõe tratamentos matemáticos e numéricos mais eficientes para SMP. O primeiro método, o qual é denominado 2N-, é baseado em densidades de frequência de transição e métodos gerais de quadratura. Basicamente, o método 2N consiste em resolver N equações integrais conjugadas e N integrais diretas. Outro método proposto, chamado Lap-, é baseado na aplicação de transformadas de Laplace as quais são invertidas por um método de quadratura Gaussiana, chamado Gauss Legendre, para obter as probabilidades de estado no domínio do tempo. Formulação matemática destes métodos assim como descrições de seus tratamentos numéricos, incluindo questões de exatidão e tempo para convergência, são desenvolvidas e fornecidas com detalhes. A efetividade dos novos desenvolvimentos 2N- e Lap- serão comparados contra os resultados fornecidos pelo método clássico por meio de exemplos no contexto de engenharia de confiabilidade. A partir destes exemplos, é mostrado que os métodos 2N- e Lap- são significantemente menos custosos e têm acurácia comparável ao método clássico
id UFPE_d1ce9809e1e9abbec33b4db688633399
oai_identifier_str oai:repositorio.ufpe.br:123456789/4939
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling MOURA, Márcio José das ChagasDROGUETT, Enrique Andrés López2014-06-12T17:35:03Z2014-06-12T17:35:03Z2009-01-31José das Chagas Moura, Márcio; Andrés López Droguett, Enrique. Novel and faster ways for solving semi-markov processes: mathematical and numerical issues. 2009. Tese (Doutorado). Programa de Pós-Graduação em Engenharia de Produção, Universidade Federal de Pernambuco, Recife, 2009.https://repositorio.ufpe.br/handle/123456789/4939ark:/64986/00130000006mkProcessos semi-Markovianos (SMP) contínuos no tempo são importantes ferramentas estocásticas para modelagem de métricas de confiabilidade ao longo do tempo para sistemas para os quais o comportamento futuro depende dos estados presente e seguinte assim como do tempo de residência. O método clássico para resolver as probabilidades intervalares de transição de SMP consiste em aplicar diretamente um método geral de quadratura às equações integrais. Entretanto, esta técnica possui um esforço computacional considerável, isto é, N2 equações integrais conjugadas devem ser resolvidas, onde N é o número de estados. Portanto, esta tese propõe tratamentos matemáticos e numéricos mais eficientes para SMP. O primeiro método, o qual é denominado 2N-, é baseado em densidades de frequência de transição e métodos gerais de quadratura. Basicamente, o método 2N consiste em resolver N equações integrais conjugadas e N integrais diretas. Outro método proposto, chamado Lap-, é baseado na aplicação de transformadas de Laplace as quais são invertidas por um método de quadratura Gaussiana, chamado Gauss Legendre, para obter as probabilidades de estado no domínio do tempo. Formulação matemática destes métodos assim como descrições de seus tratamentos numéricos, incluindo questões de exatidão e tempo para convergência, são desenvolvidas e fornecidas com detalhes. A efetividade dos novos desenvolvimentos 2N- e Lap- serão comparados contra os resultados fornecidos pelo método clássico por meio de exemplos no contexto de engenharia de confiabilidade. A partir destes exemplos, é mostrado que os métodos 2N- e Lap- são significantemente menos custosos e têm acurácia comparável ao método clássicoPetróleo Brasileiro S/AengUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessSemi-Markov ProcessTransition Frequency DensitiesQuadrature MethodsLaplace TransformsGauss QuadratureReliabilityAvailability AssessmentNovel and faster ways for solving semi-markov processes: mathematical and numerical issuesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo3630_1.pdf.jpgarquivo3630_1.pdf.jpgGenerated Thumbnailimage/jpeg1398https://repositorio.ufpe.br/bitstream/123456789/4939/4/arquivo3630_1.pdf.jpg887d1cf12f465ea21846bb2644d1f417MD54ORIGINALarquivo3630_1.pdfapplication/pdf2374215https://repositorio.ufpe.br/bitstream/123456789/4939/1/arquivo3630_1.pdf64f9cdc75ffa8167dff3140c0b1e48a2MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/4939/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo3630_1.pdf.txtarquivo3630_1.pdf.txtExtracted texttext/plain237558https://repositorio.ufpe.br/bitstream/123456789/4939/3/arquivo3630_1.pdf.txt344975cacdf4dbc14bd6c1c7f54e8404MD53123456789/49392019-10-25 20:40:11.642oai:repositorio.ufpe.br:123456789/4939Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T23:40:11Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Novel and faster ways for solving semi-markov processes: mathematical and numerical issues
title Novel and faster ways for solving semi-markov processes: mathematical and numerical issues
spellingShingle Novel and faster ways for solving semi-markov processes: mathematical and numerical issues
MOURA, Márcio José das Chagas
Semi-Markov Process
Transition Frequency Densities
Quadrature Methods
Laplace Transforms
Gauss Quadrature
Reliability
Availability Assessment
title_short Novel and faster ways for solving semi-markov processes: mathematical and numerical issues
title_full Novel and faster ways for solving semi-markov processes: mathematical and numerical issues
title_fullStr Novel and faster ways for solving semi-markov processes: mathematical and numerical issues
title_full_unstemmed Novel and faster ways for solving semi-markov processes: mathematical and numerical issues
title_sort Novel and faster ways for solving semi-markov processes: mathematical and numerical issues
author MOURA, Márcio José das Chagas
author_facet MOURA, Márcio José das Chagas
author_role author
dc.contributor.author.fl_str_mv MOURA, Márcio José das Chagas
dc.contributor.advisor1.fl_str_mv DROGUETT, Enrique Andrés López
contributor_str_mv DROGUETT, Enrique Andrés López
dc.subject.por.fl_str_mv Semi-Markov Process
Transition Frequency Densities
Quadrature Methods
Laplace Transforms
Gauss Quadrature
Reliability
Availability Assessment
topic Semi-Markov Process
Transition Frequency Densities
Quadrature Methods
Laplace Transforms
Gauss Quadrature
Reliability
Availability Assessment
description Processos semi-Markovianos (SMP) contínuos no tempo são importantes ferramentas estocásticas para modelagem de métricas de confiabilidade ao longo do tempo para sistemas para os quais o comportamento futuro depende dos estados presente e seguinte assim como do tempo de residência. O método clássico para resolver as probabilidades intervalares de transição de SMP consiste em aplicar diretamente um método geral de quadratura às equações integrais. Entretanto, esta técnica possui um esforço computacional considerável, isto é, N2 equações integrais conjugadas devem ser resolvidas, onde N é o número de estados. Portanto, esta tese propõe tratamentos matemáticos e numéricos mais eficientes para SMP. O primeiro método, o qual é denominado 2N-, é baseado em densidades de frequência de transição e métodos gerais de quadratura. Basicamente, o método 2N consiste em resolver N equações integrais conjugadas e N integrais diretas. Outro método proposto, chamado Lap-, é baseado na aplicação de transformadas de Laplace as quais são invertidas por um método de quadratura Gaussiana, chamado Gauss Legendre, para obter as probabilidades de estado no domínio do tempo. Formulação matemática destes métodos assim como descrições de seus tratamentos numéricos, incluindo questões de exatidão e tempo para convergência, são desenvolvidas e fornecidas com detalhes. A efetividade dos novos desenvolvimentos 2N- e Lap- serão comparados contra os resultados fornecidos pelo método clássico por meio de exemplos no contexto de engenharia de confiabilidade. A partir destes exemplos, é mostrado que os métodos 2N- e Lap- são significantemente menos custosos e têm acurácia comparável ao método clássico
publishDate 2009
dc.date.issued.fl_str_mv 2009-01-31
dc.date.accessioned.fl_str_mv 2014-06-12T17:35:03Z
dc.date.available.fl_str_mv 2014-06-12T17:35:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv José das Chagas Moura, Márcio; Andrés López Droguett, Enrique. Novel and faster ways for solving semi-markov processes: mathematical and numerical issues. 2009. Tese (Doutorado). Programa de Pós-Graduação em Engenharia de Produção, Universidade Federal de Pernambuco, Recife, 2009.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/4939
dc.identifier.dark.fl_str_mv ark:/64986/00130000006mk
identifier_str_mv José das Chagas Moura, Márcio; Andrés López Droguett, Enrique. Novel and faster ways for solving semi-markov processes: mathematical and numerical issues. 2009. Tese (Doutorado). Programa de Pós-Graduação em Engenharia de Produção, Universidade Federal de Pernambuco, Recife, 2009.
ark:/64986/00130000006mk
url https://repositorio.ufpe.br/handle/123456789/4939
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/4939/4/arquivo3630_1.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/4939/1/arquivo3630_1.pdf
https://repositorio.ufpe.br/bitstream/123456789/4939/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/4939/3/arquivo3630_1.pdf.txt
bitstream.checksum.fl_str_mv 887d1cf12f465ea21846bb2644d1f417
64f9cdc75ffa8167dff3140c0b1e48a2
8a4605be74aa9ea9d79846c1fba20a33
344975cacdf4dbc14bd6c1c7f54e8404
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172677107712000