Redes bayesianas para inferência de redes regulatórias de genes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/00130000130pg |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/2787 |
Resumo: | Nos últimos anos, um grande volume de dados de várias espécies vem sendo obtido através de novas técnicas criadas e aperfeiçoadas pela biologia. Entre elas, tecnologias para medir as diferenças das expressões dos genes, através de concentrações de mRNA (microarray), estão se tornando extremamente populares e seus custos estão diminuindo. A inferência de redes regulatórias de genes a partir de dados de expressão gênica para estudar o metabolismo dos organismos é um processo importante e faz surgir o desafio de conectar os genes e seus produtos em vias metabólicas, circuitos e redes funcionais. O conhecimento sobre redes regulatórias de genes pode fornecer informações valiosas para tratamento de doenças, identificação de quais genes controlam e regulam eventos celulares e descoberta de vias metabólicas mais complexas. Uma rede regulatória de genes é um modelo que representa as regulações entre genes usando um grafo direcionado, no qual os nós indicam os genes e uma aresta (Gene 1, Gene 2) indica que o Gene 1 regula o Gene 2 (através de ativação ou repressão). Vários métodos foram propostos no decorrer dos anos para inferir uma rede regulatória de genes a partir de dados de microarray de DNA usando modelos matemáticos, tais como equações diferenciais, redes Booleanas e redes Bayesianas. Este trabalho apresenta o estudo do modelo de Rede Bayesiana e a implementação de dois programas, um usando o modelo de Rede Bayesiana e o outro usando o modelo Rede Bayesiana dinâmica, ambos com regressão não-paramétrica para inferir redes regulatórias de genes a partir de dados de expressão gênica de microarray de DNA. O critério usado para escolher as melhores redes foi o Bayesian Information Criterion (BIC), que é mais simples do que outros critérios existentes, mas ainda assim, é uma abordagem eficiente. Os resultados do trabalho foram comparados com os de trabalhos anteriores usando dois conjuntos de dados: dados artificiais para inferir uma rede regulatória artificial de genes; e dados reais de microarray do ciclo celular da levedura Saccharomyces cerevisiae para inferir o ciclo do ácido tricarboxílico (TCA). Os experimentos com os dados artificiais apresentaram bons resultados quando comparados com modelos anteriores, principalmente quando informações a priori foram adicionadas. Os experimentos com dados biológicos foram mais surpreendentes, pois a quantidade de amostras existentes era pequena e, mesmo assim, os resultados obtidos foram tão bons quanto os resultados dos modelos anteriormente propostos. A inferência de redes de genes a partir de dados de microarray usando modelos matemáticos é um problema recente e difícil. Este trabalho apresenta um modelo relativamente simples com resultados promissores, podendo ser estendido em trabalhos futuros |
id |
UFPE_e1e84adbb8d2d03f2fc0b04d9e497fa8 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/2787 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SANTOS, Gustavo Bastos dosGUIMARÃES, Katia Silva2014-06-12T16:01:12Z2014-06-12T16:01:12Z2005Bastos dos Santos, Gustavo; Silva Guimarães, Katia. Redes bayesianas para inferência de redes regulatórias de genes. 2005. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2005.https://repositorio.ufpe.br/handle/123456789/2787ark:/64986/00130000130pgNos últimos anos, um grande volume de dados de várias espécies vem sendo obtido através de novas técnicas criadas e aperfeiçoadas pela biologia. Entre elas, tecnologias para medir as diferenças das expressões dos genes, através de concentrações de mRNA (microarray), estão se tornando extremamente populares e seus custos estão diminuindo. A inferência de redes regulatórias de genes a partir de dados de expressão gênica para estudar o metabolismo dos organismos é um processo importante e faz surgir o desafio de conectar os genes e seus produtos em vias metabólicas, circuitos e redes funcionais. O conhecimento sobre redes regulatórias de genes pode fornecer informações valiosas para tratamento de doenças, identificação de quais genes controlam e regulam eventos celulares e descoberta de vias metabólicas mais complexas. Uma rede regulatória de genes é um modelo que representa as regulações entre genes usando um grafo direcionado, no qual os nós indicam os genes e uma aresta (Gene 1, Gene 2) indica que o Gene 1 regula o Gene 2 (através de ativação ou repressão). Vários métodos foram propostos no decorrer dos anos para inferir uma rede regulatória de genes a partir de dados de microarray de DNA usando modelos matemáticos, tais como equações diferenciais, redes Booleanas e redes Bayesianas. Este trabalho apresenta o estudo do modelo de Rede Bayesiana e a implementação de dois programas, um usando o modelo de Rede Bayesiana e o outro usando o modelo Rede Bayesiana dinâmica, ambos com regressão não-paramétrica para inferir redes regulatórias de genes a partir de dados de expressão gênica de microarray de DNA. O critério usado para escolher as melhores redes foi o Bayesian Information Criterion (BIC), que é mais simples do que outros critérios existentes, mas ainda assim, é uma abordagem eficiente. Os resultados do trabalho foram comparados com os de trabalhos anteriores usando dois conjuntos de dados: dados artificiais para inferir uma rede regulatória artificial de genes; e dados reais de microarray do ciclo celular da levedura Saccharomyces cerevisiae para inferir o ciclo do ácido tricarboxílico (TCA). Os experimentos com os dados artificiais apresentaram bons resultados quando comparados com modelos anteriores, principalmente quando informações a priori foram adicionadas. Os experimentos com dados biológicos foram mais surpreendentes, pois a quantidade de amostras existentes era pequena e, mesmo assim, os resultados obtidos foram tão bons quanto os resultados dos modelos anteriormente propostos. A inferência de redes de genes a partir de dados de microarray usando modelos matemáticos é um problema recente e difícil. Este trabalho apresenta um modelo relativamente simples com resultados promissores, podendo ser estendido em trabalhos futurosporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessRede BayesianaInferência De Redes Regulatórias De GenesRedes bayesianas para inferência de redes regulatórias de genesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo7177_1.pdf.jpgarquivo7177_1.pdf.jpgGenerated Thumbnailimage/jpeg1268https://repositorio.ufpe.br/bitstream/123456789/2787/4/arquivo7177_1.pdf.jpgd9f62c6c4cd6a818ba2f6d5372f5f1c5MD54ORIGINALarquivo7177_1.pdfapplication/pdf1928980https://repositorio.ufpe.br/bitstream/123456789/2787/1/arquivo7177_1.pdf7200aed58639d2418b3492895d4e9061MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/2787/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo7177_1.pdf.txtarquivo7177_1.pdf.txtExtracted texttext/plain237859https://repositorio.ufpe.br/bitstream/123456789/2787/3/arquivo7177_1.pdf.txt627dca635c953ae444744426da646712MD53123456789/27872019-10-25 02:58:18.733oai:repositorio.ufpe.br:123456789/2787Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:58:18Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Redes bayesianas para inferência de redes regulatórias de genes |
title |
Redes bayesianas para inferência de redes regulatórias de genes |
spellingShingle |
Redes bayesianas para inferência de redes regulatórias de genes SANTOS, Gustavo Bastos dos Rede Bayesiana Inferência De Redes Regulatórias De Genes |
title_short |
Redes bayesianas para inferência de redes regulatórias de genes |
title_full |
Redes bayesianas para inferência de redes regulatórias de genes |
title_fullStr |
Redes bayesianas para inferência de redes regulatórias de genes |
title_full_unstemmed |
Redes bayesianas para inferência de redes regulatórias de genes |
title_sort |
Redes bayesianas para inferência de redes regulatórias de genes |
author |
SANTOS, Gustavo Bastos dos |
author_facet |
SANTOS, Gustavo Bastos dos |
author_role |
author |
dc.contributor.author.fl_str_mv |
SANTOS, Gustavo Bastos dos |
dc.contributor.advisor1.fl_str_mv |
GUIMARÃES, Katia Silva |
contributor_str_mv |
GUIMARÃES, Katia Silva |
dc.subject.por.fl_str_mv |
Rede Bayesiana Inferência De Redes Regulatórias De Genes |
topic |
Rede Bayesiana Inferência De Redes Regulatórias De Genes |
description |
Nos últimos anos, um grande volume de dados de várias espécies vem sendo obtido através de novas técnicas criadas e aperfeiçoadas pela biologia. Entre elas, tecnologias para medir as diferenças das expressões dos genes, através de concentrações de mRNA (microarray), estão se tornando extremamente populares e seus custos estão diminuindo. A inferência de redes regulatórias de genes a partir de dados de expressão gênica para estudar o metabolismo dos organismos é um processo importante e faz surgir o desafio de conectar os genes e seus produtos em vias metabólicas, circuitos e redes funcionais. O conhecimento sobre redes regulatórias de genes pode fornecer informações valiosas para tratamento de doenças, identificação de quais genes controlam e regulam eventos celulares e descoberta de vias metabólicas mais complexas. Uma rede regulatória de genes é um modelo que representa as regulações entre genes usando um grafo direcionado, no qual os nós indicam os genes e uma aresta (Gene 1, Gene 2) indica que o Gene 1 regula o Gene 2 (através de ativação ou repressão). Vários métodos foram propostos no decorrer dos anos para inferir uma rede regulatória de genes a partir de dados de microarray de DNA usando modelos matemáticos, tais como equações diferenciais, redes Booleanas e redes Bayesianas. Este trabalho apresenta o estudo do modelo de Rede Bayesiana e a implementação de dois programas, um usando o modelo de Rede Bayesiana e o outro usando o modelo Rede Bayesiana dinâmica, ambos com regressão não-paramétrica para inferir redes regulatórias de genes a partir de dados de expressão gênica de microarray de DNA. O critério usado para escolher as melhores redes foi o Bayesian Information Criterion (BIC), que é mais simples do que outros critérios existentes, mas ainda assim, é uma abordagem eficiente. Os resultados do trabalho foram comparados com os de trabalhos anteriores usando dois conjuntos de dados: dados artificiais para inferir uma rede regulatória artificial de genes; e dados reais de microarray do ciclo celular da levedura Saccharomyces cerevisiae para inferir o ciclo do ácido tricarboxílico (TCA). Os experimentos com os dados artificiais apresentaram bons resultados quando comparados com modelos anteriores, principalmente quando informações a priori foram adicionadas. Os experimentos com dados biológicos foram mais surpreendentes, pois a quantidade de amostras existentes era pequena e, mesmo assim, os resultados obtidos foram tão bons quanto os resultados dos modelos anteriormente propostos. A inferência de redes de genes a partir de dados de microarray usando modelos matemáticos é um problema recente e difícil. Este trabalho apresenta um modelo relativamente simples com resultados promissores, podendo ser estendido em trabalhos futuros |
publishDate |
2005 |
dc.date.issued.fl_str_mv |
2005 |
dc.date.accessioned.fl_str_mv |
2014-06-12T16:01:12Z |
dc.date.available.fl_str_mv |
2014-06-12T16:01:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Bastos dos Santos, Gustavo; Silva Guimarães, Katia. Redes bayesianas para inferência de redes regulatórias de genes. 2005. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2005. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/2787 |
dc.identifier.dark.fl_str_mv |
ark:/64986/00130000130pg |
identifier_str_mv |
Bastos dos Santos, Gustavo; Silva Guimarães, Katia. Redes bayesianas para inferência de redes regulatórias de genes. 2005. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2005. ark:/64986/00130000130pg |
url |
https://repositorio.ufpe.br/handle/123456789/2787 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/2787/4/arquivo7177_1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/2787/1/arquivo7177_1.pdf https://repositorio.ufpe.br/bitstream/123456789/2787/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/2787/3/arquivo7177_1.pdf.txt |
bitstream.checksum.fl_str_mv |
d9f62c6c4cd6a818ba2f6d5372f5f1c5 7200aed58639d2418b3492895d4e9061 8a4605be74aa9ea9d79846c1fba20a33 627dca635c953ae444744426da646712 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172986656784384 |