Adaptive ansatz based on low-rank state preparation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000zz6g |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/53791 |
Resumo: | Quantum State Preparation Algorithms consist of defining a sequence or unitary operations to load a specific target state on a quantum computer. We can use those algorithms in appli- cations such as quantum machine learning. However, some state preparation algorithms have exponential circuit complexity with the number of qubits on the system. That is the case of amplitude encoding algorithms, which is an encoding type for loading normalized data into the probability amplitudes of the state. To circumvent this overhead in circuits’ complexity, works explore specific properties of quantum states to optimize the circuit’s complexity, such as sparsity or symmetry. Other works explore simplifying the quantum circuit to load an ap- proximate quantum state. It is the case of Quantum Generative Adversarial Networks, which use a specific circuit architecture comprised of alternating blocks of single-qubit rotations and two-qubit entangling controlled gates. But when trained to load random distributions on, we observed the performance deteriorates as the number of qubits increases in terms of relative entropy. In this work, we propose different architectures for the Quantum Generative mod- els based on the state preparation algorithm known as Low-Rank. Through experiments for loading the log-normal distribution, we show error reductions in quantum state initialization. |
id |
UFPE_e5f90d1a8a36ce06af749647e48323a6 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/53791 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
ARAÚJO, Ismael Cesar da Silvahttp://lattes.cnpq.br/7125338940009959http://lattes.cnpq.br/0314035098884256SILVA, Adenilton José da2023-11-29T11:23:36Z2023-11-29T11:23:36Z2023-08-04ARAÚJO, Ismael Cesar da Silva. Adaptive ansatz based on low-rank state preparation. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/53791ark:/64986/001300000zz6gQuantum State Preparation Algorithms consist of defining a sequence or unitary operations to load a specific target state on a quantum computer. We can use those algorithms in appli- cations such as quantum machine learning. However, some state preparation algorithms have exponential circuit complexity with the number of qubits on the system. That is the case of amplitude encoding algorithms, which is an encoding type for loading normalized data into the probability amplitudes of the state. To circumvent this overhead in circuits’ complexity, works explore specific properties of quantum states to optimize the circuit’s complexity, such as sparsity or symmetry. Other works explore simplifying the quantum circuit to load an ap- proximate quantum state. It is the case of Quantum Generative Adversarial Networks, which use a specific circuit architecture comprised of alternating blocks of single-qubit rotations and two-qubit entangling controlled gates. But when trained to load random distributions on, we observed the performance deteriorates as the number of qubits increases in terms of relative entropy. In this work, we propose different architectures for the Quantum Generative mod- els based on the state preparation algorithm known as Low-Rank. Through experiments for loading the log-normal distribution, we show error reductions in quantum state initialization.CNPqAlgoritmos de preparação do estado quântico consistem em definir de uma sequência de oper- ações unitárias para carregar um estado-alvo específico em um computador quântico. Podemos utilizar estes algoritmos em aplicações como Aprendizagem de Máquina Quântica. No entanto, alguns algoritmos para inicialização de estados quânticos têm uma complexidade de circuito exponencial com o número de qubits no sistema. É o caso dos algoritmos de codificação nas amplitudes, que é um tipo de codificação para carregar dados normalizados nas amplitudes de probabilidade do estado. Para contornar esta sobrecarga na complexidade, trabalhos exploram propriedades específicas dos estados quânticos para otimizar a complexidade do circuito, como a esparsidade ou a simetria. Outros trabalhos exploram a simplificação do circuito quântico para carregar um estado aproximado. É o caso das Redes Generativas Adversariais Quânti- cas, que utilizam uma arquitetura de circuito específica composta por blocos alternados de rotações de um qubit e portas controladas de emaranhamento de dois qubits. Porém, quando treinadas para carregar distribuições aleatórias, observamos que o desempenho se deteriora à medida que o número de qubits aumenta segundo a entropia relativa. Neste trabalho, propo- mos uma arquitetura diferente para os modelos generativos quânticos, baseada no algoritmo de preparação de estados conhecido como Low-Rank. E através de experimentos para carregar a distribuição log-normal, mostramos redução no erro da inicialização dos estados quânticos.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência computacionalAprendizagem de máquinaAdaptive ansatz based on low-rank state preparationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALDISSERTAÇÃO Ismael Cesar da Silva Araujo.pdfDISSERTAÇÃO Ismael Cesar da Silva Araujo.pdfapplication/pdf1072978https://repositorio.ufpe.br/bitstream/123456789/53791/1/DISSERTA%c3%87%c3%83O%20Ismael%20Cesar%20da%20Silva%20Araujo.pdf74bb85262310e2105ac1ff5d035d72d3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/53791/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/53791/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTDISSERTAÇÃO Ismael Cesar da Silva Araujo.pdf.txtDISSERTAÇÃO Ismael Cesar da Silva Araujo.pdf.txtExtracted texttext/plain88292https://repositorio.ufpe.br/bitstream/123456789/53791/4/DISSERTA%c3%87%c3%83O%20Ismael%20Cesar%20da%20Silva%20Araujo.pdf.txt8af1e2b513aa28e1843c93651b34cfaaMD54THUMBNAILDISSERTAÇÃO Ismael Cesar da Silva Araujo.pdf.jpgDISSERTAÇÃO Ismael Cesar da Silva Araujo.pdf.jpgGenerated Thumbnailimage/jpeg1222https://repositorio.ufpe.br/bitstream/123456789/53791/5/DISSERTA%c3%87%c3%83O%20Ismael%20Cesar%20da%20Silva%20Araujo.pdf.jpg030a12c0b0cd1dc061ab4dcdd2febd54MD55123456789/537912024-01-05 02:27:49.85oai:repositorio.ufpe.br:123456789/53791VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212024-01-05T05:27:49Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Adaptive ansatz based on low-rank state preparation |
title |
Adaptive ansatz based on low-rank state preparation |
spellingShingle |
Adaptive ansatz based on low-rank state preparation ARAÚJO, Ismael Cesar da Silva Inteligência computacional Aprendizagem de máquina |
title_short |
Adaptive ansatz based on low-rank state preparation |
title_full |
Adaptive ansatz based on low-rank state preparation |
title_fullStr |
Adaptive ansatz based on low-rank state preparation |
title_full_unstemmed |
Adaptive ansatz based on low-rank state preparation |
title_sort |
Adaptive ansatz based on low-rank state preparation |
author |
ARAÚJO, Ismael Cesar da Silva |
author_facet |
ARAÚJO, Ismael Cesar da Silva |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/7125338940009959 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/0314035098884256 |
dc.contributor.author.fl_str_mv |
ARAÚJO, Ismael Cesar da Silva |
dc.contributor.advisor1.fl_str_mv |
SILVA, Adenilton José da |
contributor_str_mv |
SILVA, Adenilton José da |
dc.subject.por.fl_str_mv |
Inteligência computacional Aprendizagem de máquina |
topic |
Inteligência computacional Aprendizagem de máquina |
description |
Quantum State Preparation Algorithms consist of defining a sequence or unitary operations to load a specific target state on a quantum computer. We can use those algorithms in appli- cations such as quantum machine learning. However, some state preparation algorithms have exponential circuit complexity with the number of qubits on the system. That is the case of amplitude encoding algorithms, which is an encoding type for loading normalized data into the probability amplitudes of the state. To circumvent this overhead in circuits’ complexity, works explore specific properties of quantum states to optimize the circuit’s complexity, such as sparsity or symmetry. Other works explore simplifying the quantum circuit to load an ap- proximate quantum state. It is the case of Quantum Generative Adversarial Networks, which use a specific circuit architecture comprised of alternating blocks of single-qubit rotations and two-qubit entangling controlled gates. But when trained to load random distributions on, we observed the performance deteriorates as the number of qubits increases in terms of relative entropy. In this work, we propose different architectures for the Quantum Generative mod- els based on the state preparation algorithm known as Low-Rank. Through experiments for loading the log-normal distribution, we show error reductions in quantum state initialization. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-11-29T11:23:36Z |
dc.date.available.fl_str_mv |
2023-11-29T11:23:36Z |
dc.date.issued.fl_str_mv |
2023-08-04 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ARAÚJO, Ismael Cesar da Silva. Adaptive ansatz based on low-rank state preparation. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/53791 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000zz6g |
identifier_str_mv |
ARAÚJO, Ismael Cesar da Silva. Adaptive ansatz based on low-rank state preparation. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023. ark:/64986/001300000zz6g |
url |
https://repositorio.ufpe.br/handle/123456789/53791 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/53791/1/DISSERTA%c3%87%c3%83O%20Ismael%20Cesar%20da%20Silva%20Araujo.pdf https://repositorio.ufpe.br/bitstream/123456789/53791/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/53791/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/53791/4/DISSERTA%c3%87%c3%83O%20Ismael%20Cesar%20da%20Silva%20Araujo.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/53791/5/DISSERTA%c3%87%c3%83O%20Ismael%20Cesar%20da%20Silva%20Araujo.pdf.jpg |
bitstream.checksum.fl_str_mv |
74bb85262310e2105ac1ff5d035d72d3 e39d27027a6cc9cb039ad269a5db8e34 5e89a1613ddc8510c6576f4b23a78973 8af1e2b513aa28e1843c93651b34cfaa 030a12c0b0cd1dc061ab4dcdd2febd54 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172958007590912 |