Adaptive ansatz based on low-rank state preparation

Detalhes bibliográficos
Autor(a) principal: ARAÚJO, Ismael Cesar da Silva
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000zz6g
Texto Completo: https://repositorio.ufpe.br/handle/123456789/53791
Resumo: Quantum State Preparation Algorithms consist of defining a sequence or unitary operations to load a specific target state on a quantum computer. We can use those algorithms in appli- cations such as quantum machine learning. However, some state preparation algorithms have exponential circuit complexity with the number of qubits on the system. That is the case of amplitude encoding algorithms, which is an encoding type for loading normalized data into the probability amplitudes of the state. To circumvent this overhead in circuits’ complexity, works explore specific properties of quantum states to optimize the circuit’s complexity, such as sparsity or symmetry. Other works explore simplifying the quantum circuit to load an ap- proximate quantum state. It is the case of Quantum Generative Adversarial Networks, which use a specific circuit architecture comprised of alternating blocks of single-qubit rotations and two-qubit entangling controlled gates. But when trained to load random distributions on, we observed the performance deteriorates as the number of qubits increases in terms of relative entropy. In this work, we propose different architectures for the Quantum Generative mod- els based on the state preparation algorithm known as Low-Rank. Through experiments for loading the log-normal distribution, we show error reductions in quantum state initialization.
id UFPE_e5f90d1a8a36ce06af749647e48323a6
oai_identifier_str oai:repositorio.ufpe.br:123456789/53791
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling ARAÚJO, Ismael Cesar da Silvahttp://lattes.cnpq.br/7125338940009959http://lattes.cnpq.br/0314035098884256SILVA, Adenilton José da2023-11-29T11:23:36Z2023-11-29T11:23:36Z2023-08-04ARAÚJO, Ismael Cesar da Silva. Adaptive ansatz based on low-rank state preparation. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/53791ark:/64986/001300000zz6gQuantum State Preparation Algorithms consist of defining a sequence or unitary operations to load a specific target state on a quantum computer. We can use those algorithms in appli- cations such as quantum machine learning. However, some state preparation algorithms have exponential circuit complexity with the number of qubits on the system. That is the case of amplitude encoding algorithms, which is an encoding type for loading normalized data into the probability amplitudes of the state. To circumvent this overhead in circuits’ complexity, works explore specific properties of quantum states to optimize the circuit’s complexity, such as sparsity or symmetry. Other works explore simplifying the quantum circuit to load an ap- proximate quantum state. It is the case of Quantum Generative Adversarial Networks, which use a specific circuit architecture comprised of alternating blocks of single-qubit rotations and two-qubit entangling controlled gates. But when trained to load random distributions on, we observed the performance deteriorates as the number of qubits increases in terms of relative entropy. In this work, we propose different architectures for the Quantum Generative mod- els based on the state preparation algorithm known as Low-Rank. Through experiments for loading the log-normal distribution, we show error reductions in quantum state initialization.CNPqAlgoritmos de preparação do estado quântico consistem em definir de uma sequência de oper- ações unitárias para carregar um estado-alvo específico em um computador quântico. Podemos utilizar estes algoritmos em aplicações como Aprendizagem de Máquina Quântica. No entanto, alguns algoritmos para inicialização de estados quânticos têm uma complexidade de circuito exponencial com o número de qubits no sistema. É o caso dos algoritmos de codificação nas amplitudes, que é um tipo de codificação para carregar dados normalizados nas amplitudes de probabilidade do estado. Para contornar esta sobrecarga na complexidade, trabalhos exploram propriedades específicas dos estados quânticos para otimizar a complexidade do circuito, como a esparsidade ou a simetria. Outros trabalhos exploram a simplificação do circuito quântico para carregar um estado aproximado. É o caso das Redes Generativas Adversariais Quânti- cas, que utilizam uma arquitetura de circuito específica composta por blocos alternados de rotações de um qubit e portas controladas de emaranhamento de dois qubits. Porém, quando treinadas para carregar distribuições aleatórias, observamos que o desempenho se deteriora à medida que o número de qubits aumenta segundo a entropia relativa. Neste trabalho, propo- mos uma arquitetura diferente para os modelos generativos quânticos, baseada no algoritmo de preparação de estados conhecido como Low-Rank. E através de experimentos para carregar a distribuição log-normal, mostramos redução no erro da inicialização dos estados quânticos.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência computacionalAprendizagem de máquinaAdaptive ansatz based on low-rank state preparationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALDISSERTAÇÃO Ismael Cesar da Silva Araujo.pdfDISSERTAÇÃO Ismael Cesar da Silva Araujo.pdfapplication/pdf1072978https://repositorio.ufpe.br/bitstream/123456789/53791/1/DISSERTA%c3%87%c3%83O%20Ismael%20Cesar%20da%20Silva%20Araujo.pdf74bb85262310e2105ac1ff5d035d72d3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/53791/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/53791/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTDISSERTAÇÃO Ismael Cesar da Silva Araujo.pdf.txtDISSERTAÇÃO Ismael Cesar da Silva Araujo.pdf.txtExtracted texttext/plain88292https://repositorio.ufpe.br/bitstream/123456789/53791/4/DISSERTA%c3%87%c3%83O%20Ismael%20Cesar%20da%20Silva%20Araujo.pdf.txt8af1e2b513aa28e1843c93651b34cfaaMD54THUMBNAILDISSERTAÇÃO Ismael Cesar da Silva Araujo.pdf.jpgDISSERTAÇÃO Ismael Cesar da Silva Araujo.pdf.jpgGenerated Thumbnailimage/jpeg1222https://repositorio.ufpe.br/bitstream/123456789/53791/5/DISSERTA%c3%87%c3%83O%20Ismael%20Cesar%20da%20Silva%20Araujo.pdf.jpg030a12c0b0cd1dc061ab4dcdd2febd54MD55123456789/537912024-01-05 02:27:49.85oai:repositorio.ufpe.br:123456789/53791VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212024-01-05T05:27:49Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Adaptive ansatz based on low-rank state preparation
title Adaptive ansatz based on low-rank state preparation
spellingShingle Adaptive ansatz based on low-rank state preparation
ARAÚJO, Ismael Cesar da Silva
Inteligência computacional
Aprendizagem de máquina
title_short Adaptive ansatz based on low-rank state preparation
title_full Adaptive ansatz based on low-rank state preparation
title_fullStr Adaptive ansatz based on low-rank state preparation
title_full_unstemmed Adaptive ansatz based on low-rank state preparation
title_sort Adaptive ansatz based on low-rank state preparation
author ARAÚJO, Ismael Cesar da Silva
author_facet ARAÚJO, Ismael Cesar da Silva
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/7125338940009959
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0314035098884256
dc.contributor.author.fl_str_mv ARAÚJO, Ismael Cesar da Silva
dc.contributor.advisor1.fl_str_mv SILVA, Adenilton José da
contributor_str_mv SILVA, Adenilton José da
dc.subject.por.fl_str_mv Inteligência computacional
Aprendizagem de máquina
topic Inteligência computacional
Aprendizagem de máquina
description Quantum State Preparation Algorithms consist of defining a sequence or unitary operations to load a specific target state on a quantum computer. We can use those algorithms in appli- cations such as quantum machine learning. However, some state preparation algorithms have exponential circuit complexity with the number of qubits on the system. That is the case of amplitude encoding algorithms, which is an encoding type for loading normalized data into the probability amplitudes of the state. To circumvent this overhead in circuits’ complexity, works explore specific properties of quantum states to optimize the circuit’s complexity, such as sparsity or symmetry. Other works explore simplifying the quantum circuit to load an ap- proximate quantum state. It is the case of Quantum Generative Adversarial Networks, which use a specific circuit architecture comprised of alternating blocks of single-qubit rotations and two-qubit entangling controlled gates. But when trained to load random distributions on, we observed the performance deteriorates as the number of qubits increases in terms of relative entropy. In this work, we propose different architectures for the Quantum Generative mod- els based on the state preparation algorithm known as Low-Rank. Through experiments for loading the log-normal distribution, we show error reductions in quantum state initialization.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-11-29T11:23:36Z
dc.date.available.fl_str_mv 2023-11-29T11:23:36Z
dc.date.issued.fl_str_mv 2023-08-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ARAÚJO, Ismael Cesar da Silva. Adaptive ansatz based on low-rank state preparation. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/53791
dc.identifier.dark.fl_str_mv ark:/64986/001300000zz6g
identifier_str_mv ARAÚJO, Ismael Cesar da Silva. Adaptive ansatz based on low-rank state preparation. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023.
ark:/64986/001300000zz6g
url https://repositorio.ufpe.br/handle/123456789/53791
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/53791/1/DISSERTA%c3%87%c3%83O%20Ismael%20Cesar%20da%20Silva%20Araujo.pdf
https://repositorio.ufpe.br/bitstream/123456789/53791/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/53791/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/53791/4/DISSERTA%c3%87%c3%83O%20Ismael%20Cesar%20da%20Silva%20Araujo.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/53791/5/DISSERTA%c3%87%c3%83O%20Ismael%20Cesar%20da%20Silva%20Araujo.pdf.jpg
bitstream.checksum.fl_str_mv 74bb85262310e2105ac1ff5d035d72d3
e39d27027a6cc9cb039ad269a5db8e34
5e89a1613ddc8510c6576f4b23a78973
8af1e2b513aa28e1843c93651b34cfaa
030a12c0b0cd1dc061ab4dcdd2febd54
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172958007590912