Unconventional criticality in the stochastic Wilson-Cowan model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300001432m |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/56169 |
Resumo: | The Wilson-Cowan model serves as a classic framework for comprehending the collective neuronal dynamics within networks comprising both excitatory and inhibitory units. Extensively employed in literature, it facilitates the analysis of collective phases in neural networks at a mean-field level, i.e., when considering large fully connected networks. To study fluctuation- induced phenomena, the dynamical model alone is insufficient; to address this issue, we need to work with a stochastic rate model that is reduced to the Wilson-Cowan equations in a mean-field approach. Throughout this thesis, we analyze the resulting phase diagram of the stochastic Wilson-Cowan model near the active to quiescent phase transitions. We unveil eight possible types of transitions that depend on the relative strengths of excitatory and inhibitory couplings. Among these transitions are second-order and first-order types, as expected, as well as three transitions with a surprising mixture of behaviors. The three bona fide second- order phase transitions belong to the well-known directed percolation universality class, the tricritical directed percolation universality class, and a novel universality class called “Hopf tricritical directed percolation", which presents an unconventional behavior with the breakdown of some scaling relations. The discontinuous transitions behave as expected and the hybrid transitions have different anomalies in scaling across them. Our results broaden our knowledge and characterize the types of critical behavior in excitatory and inhibitory networks and help us understand avalanche dynamics in neuronal recordings. From a more general perspective, these results contribute to extending the theory of non-equilibrium phase transitions into quiescent or absorbing states. |
id |
UFPE_f09aad47d62e26fd031ceb2a945a8be0 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/56169 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
BASTOS, Helena Christina Piuvezam de Albuquerquehttp://lattes.cnpq.br/6373327506505583http://lattes.cnpq.br/9400915429521069SILVA, Mauro Copelli Lopes da2024-05-02T14:03:18Z2024-05-02T14:03:18Z2023-12-15BASTOS, Helena Christina Piuvezam de Albuquerque. Unconventional criticality in the stochastic Wilson-Cowan model. 2023. Tese (Doutorado em Física) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/56169ark:/64986/001300001432mThe Wilson-Cowan model serves as a classic framework for comprehending the collective neuronal dynamics within networks comprising both excitatory and inhibitory units. Extensively employed in literature, it facilitates the analysis of collective phases in neural networks at a mean-field level, i.e., when considering large fully connected networks. To study fluctuation- induced phenomena, the dynamical model alone is insufficient; to address this issue, we need to work with a stochastic rate model that is reduced to the Wilson-Cowan equations in a mean-field approach. Throughout this thesis, we analyze the resulting phase diagram of the stochastic Wilson-Cowan model near the active to quiescent phase transitions. We unveil eight possible types of transitions that depend on the relative strengths of excitatory and inhibitory couplings. Among these transitions are second-order and first-order types, as expected, as well as three transitions with a surprising mixture of behaviors. The three bona fide second- order phase transitions belong to the well-known directed percolation universality class, the tricritical directed percolation universality class, and a novel universality class called “Hopf tricritical directed percolation", which presents an unconventional behavior with the breakdown of some scaling relations. The discontinuous transitions behave as expected and the hybrid transitions have different anomalies in scaling across them. Our results broaden our knowledge and characterize the types of critical behavior in excitatory and inhibitory networks and help us understand avalanche dynamics in neuronal recordings. From a more general perspective, these results contribute to extending the theory of non-equilibrium phase transitions into quiescent or absorbing states.CAPESO modelo Wilson-Cowan é um modelo clássico para a compreensão da dinâmica coletiva de redes neurais com unidades excitatórias e inibitórias. Esse modelo foi extensivamente estu- dado na literatura, especialmente na análise de fases de redes neurais em uma aproximação de campo médio, ou seja, em grandes redes completamente conectada. Para estudar fenô- menos induzidos por flutuações, o modelo dinâmico é insuficiente. Portanto, é importante introduzirmos um modelo estocástico de taxas que se reduz às equações de Wilson-Cowan na aproximação de campo médio. Nesta tese, analisamos o diagrama de fases do modelo esto- cástico de Wilson-Cowan acerca das transições ativo-quiescente. Desvendamos oito possíveis tipos de transições dependentes do valor relativo do acoplamento entre unidades excitatorias e inibitórias. Entre essas transições estão transições de segunda e primeira ordem, e adicio- nalmente encontramos três tipos de transições que possuem uma mistura de comportamento ou hibridas. As três transições verdadeiramente críticas pertencem às classes de percolação direcionada, percolação direcionada tricrítica e uma classe nova que chamamos de “percolação direcionada Hopf tricrítica", que apresenta um comportamento não convencional com quebras de relações de escala. As transições descontínuas se comportam como esperado e as híbridas apresentam diferentes anomalias entres elas. Nossos resultados ampliam o conhecimento sobre e caracterizam os tipos de comportamento crítico em redes excitatórias e inibitórias, alén de ajudar a compreender a dinâmica de avalanches em registros neuronais experimentais. De uma perspectiva mais geral, estes resultados contribuem para estender a teoria de transições de fase de não-equilíbrio entre estados quiescentes e absorventes.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Educacao FisicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFísica teórica e computacionalModelo de Wilson-CowanAvalanches neuronaisUnconventional criticality in the stochastic Wilson-Cowan modelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE Helena Christina Piuvezam de Albuquerque Bastos.pdfTESE Helena Christina Piuvezam de Albuquerque Bastos.pdfapplication/pdf7539358https://repositorio.ufpe.br/bitstream/123456789/56169/1/TESE%20Helena%20Christina%20Piuvezam%20de%20Albuquerque%20Bastos.pdfde3408336726e94f1789d7bb6546f9edMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/56169/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/56169/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTTESE Helena Christina Piuvezam de Albuquerque Bastos.pdf.txtTESE Helena Christina Piuvezam de Albuquerque Bastos.pdf.txtExtracted texttext/plain235010https://repositorio.ufpe.br/bitstream/123456789/56169/4/TESE%20Helena%20Christina%20Piuvezam%20de%20Albuquerque%20Bastos.pdf.txtb9a1e8617f80f16647f9a4ba4befc221MD54THUMBNAILTESE Helena Christina Piuvezam de Albuquerque Bastos.pdf.jpgTESE Helena Christina Piuvezam de Albuquerque Bastos.pdf.jpgGenerated Thumbnailimage/jpeg1217https://repositorio.ufpe.br/bitstream/123456789/56169/5/TESE%20Helena%20Christina%20Piuvezam%20de%20Albuquerque%20Bastos.pdf.jpg1c6891a479fbe2f158127689d73be1deMD55123456789/561692024-05-03 02:26:54.953oai:repositorio.ufpe.br:123456789/56169VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212024-05-03T05:26:54Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Unconventional criticality in the stochastic Wilson-Cowan model |
title |
Unconventional criticality in the stochastic Wilson-Cowan model |
spellingShingle |
Unconventional criticality in the stochastic Wilson-Cowan model BASTOS, Helena Christina Piuvezam de Albuquerque Física teórica e computacional Modelo de Wilson-Cowan Avalanches neuronais |
title_short |
Unconventional criticality in the stochastic Wilson-Cowan model |
title_full |
Unconventional criticality in the stochastic Wilson-Cowan model |
title_fullStr |
Unconventional criticality in the stochastic Wilson-Cowan model |
title_full_unstemmed |
Unconventional criticality in the stochastic Wilson-Cowan model |
title_sort |
Unconventional criticality in the stochastic Wilson-Cowan model |
author |
BASTOS, Helena Christina Piuvezam de Albuquerque |
author_facet |
BASTOS, Helena Christina Piuvezam de Albuquerque |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6373327506505583 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9400915429521069 |
dc.contributor.author.fl_str_mv |
BASTOS, Helena Christina Piuvezam de Albuquerque |
dc.contributor.advisor1.fl_str_mv |
SILVA, Mauro Copelli Lopes da |
contributor_str_mv |
SILVA, Mauro Copelli Lopes da |
dc.subject.por.fl_str_mv |
Física teórica e computacional Modelo de Wilson-Cowan Avalanches neuronais |
topic |
Física teórica e computacional Modelo de Wilson-Cowan Avalanches neuronais |
description |
The Wilson-Cowan model serves as a classic framework for comprehending the collective neuronal dynamics within networks comprising both excitatory and inhibitory units. Extensively employed in literature, it facilitates the analysis of collective phases in neural networks at a mean-field level, i.e., when considering large fully connected networks. To study fluctuation- induced phenomena, the dynamical model alone is insufficient; to address this issue, we need to work with a stochastic rate model that is reduced to the Wilson-Cowan equations in a mean-field approach. Throughout this thesis, we analyze the resulting phase diagram of the stochastic Wilson-Cowan model near the active to quiescent phase transitions. We unveil eight possible types of transitions that depend on the relative strengths of excitatory and inhibitory couplings. Among these transitions are second-order and first-order types, as expected, as well as three transitions with a surprising mixture of behaviors. The three bona fide second- order phase transitions belong to the well-known directed percolation universality class, the tricritical directed percolation universality class, and a novel universality class called “Hopf tricritical directed percolation", which presents an unconventional behavior with the breakdown of some scaling relations. The discontinuous transitions behave as expected and the hybrid transitions have different anomalies in scaling across them. Our results broaden our knowledge and characterize the types of critical behavior in excitatory and inhibitory networks and help us understand avalanche dynamics in neuronal recordings. From a more general perspective, these results contribute to extending the theory of non-equilibrium phase transitions into quiescent or absorbing states. |
publishDate |
2023 |
dc.date.issued.fl_str_mv |
2023-12-15 |
dc.date.accessioned.fl_str_mv |
2024-05-02T14:03:18Z |
dc.date.available.fl_str_mv |
2024-05-02T14:03:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BASTOS, Helena Christina Piuvezam de Albuquerque. Unconventional criticality in the stochastic Wilson-Cowan model. 2023. Tese (Doutorado em Física) – Universidade Federal de Pernambuco, Recife, 2023. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/56169 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300001432m |
identifier_str_mv |
BASTOS, Helena Christina Piuvezam de Albuquerque. Unconventional criticality in the stochastic Wilson-Cowan model. 2023. Tese (Doutorado em Física) – Universidade Federal de Pernambuco, Recife, 2023. ark:/64986/001300001432m |
url |
https://repositorio.ufpe.br/handle/123456789/56169 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Educacao Fisica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/56169/1/TESE%20Helena%20Christina%20Piuvezam%20de%20Albuquerque%20Bastos.pdf https://repositorio.ufpe.br/bitstream/123456789/56169/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/56169/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/56169/4/TESE%20Helena%20Christina%20Piuvezam%20de%20Albuquerque%20Bastos.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/56169/5/TESE%20Helena%20Christina%20Piuvezam%20de%20Albuquerque%20Bastos.pdf.jpg |
bitstream.checksum.fl_str_mv |
de3408336726e94f1789d7bb6546f9ed e39d27027a6cc9cb039ad269a5db8e34 5e89a1613ddc8510c6576f4b23a78973 b9a1e8617f80f16647f9a4ba4befc221 1c6891a479fbe2f158127689d73be1de |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172996949606400 |