Dinâmica de pêndulos de Huygens
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000svmd |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/46705 |
Resumo: | Caos transiente devido à fraca dissipação em sistemas dinâmicos hamiltonianos vem sendo estudado visando a compreensão de muitos sistemas naturais na física, biologia, economia e astronomia. Nesta dissertação apresentaremos um estudo de osciladores acoplados na confi- guração de pêndulos com seus eixos fixos a uma estrutura rígida e livre para mover-se ho- rizontalmente. Nomeamos este conjunto de osciladores de pêndulos de Huygens, motivados pelo sistema de relógios originalmente descrito por Christiaan Huygens no século XVII, onde ele observou pela primeira vez o fenômeno de sincronização. Avaliamos então a dinâmica a partir de condições iniciais com altas velocidades angulares nos pêndulos, também considera- mos os efeitos dissipativos de atrito. Ao realizar esta evolução no tempo percebemos que o sistema apresenta instabilidades devido à tendência de sincronização dos pêndulos entre si. Es- tas instabilidades apresentam-se na forma de bifurcações com regiões de quasi-periodicidade transiente assim como de caos transiente. Os cálculos numéricos são realizados seguindo a trajetória do sistema para analisar o papel das dissipações nestas instabilidades, assim como procuramos entender como o parâmetro de acoplamento dos pêndulos afeta os comportamen- tos observados. Calculamos numericamente o máximo expoente de Lyapunov de tempo finito ao longo de trajetórias típicas. Vemos que é possível obter valores positivos para algumas das regiões observadas, servindo de forte indicativo de caos nestas regiões, em particular o tipo de caos denominado de duplamente transiente. Nossas escolhas de parâmetros para as equações tratadas numericamente foram feitas baseadas em observações qualitativas de um sistema experimental montado em laboratório. |
id |
UFPE_f6ade5e8080b8a94a9fbc375049fe875 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/46705 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
DIAS, Gustavo Gama Cambrainha de Albuquerquehttp://lattes.cnpq.br/9447941220887388http://lattes.cnpq.br/6237354847089624LEITE, José Roberto Rios2022-09-23T14:26:16Z2022-09-23T14:26:16Z2022-06-28DIAS, Gustavo Gama Cambrainha de Albuquerque. Dinâmica de pêndulos de Huygens. 2022. Dissertação (Mestrado em Física) - Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/46705ark:/64986/001300000svmdCaos transiente devido à fraca dissipação em sistemas dinâmicos hamiltonianos vem sendo estudado visando a compreensão de muitos sistemas naturais na física, biologia, economia e astronomia. Nesta dissertação apresentaremos um estudo de osciladores acoplados na confi- guração de pêndulos com seus eixos fixos a uma estrutura rígida e livre para mover-se ho- rizontalmente. Nomeamos este conjunto de osciladores de pêndulos de Huygens, motivados pelo sistema de relógios originalmente descrito por Christiaan Huygens no século XVII, onde ele observou pela primeira vez o fenômeno de sincronização. Avaliamos então a dinâmica a partir de condições iniciais com altas velocidades angulares nos pêndulos, também considera- mos os efeitos dissipativos de atrito. Ao realizar esta evolução no tempo percebemos que o sistema apresenta instabilidades devido à tendência de sincronização dos pêndulos entre si. Es- tas instabilidades apresentam-se na forma de bifurcações com regiões de quasi-periodicidade transiente assim como de caos transiente. Os cálculos numéricos são realizados seguindo a trajetória do sistema para analisar o papel das dissipações nestas instabilidades, assim como procuramos entender como o parâmetro de acoplamento dos pêndulos afeta os comportamen- tos observados. Calculamos numericamente o máximo expoente de Lyapunov de tempo finito ao longo de trajetórias típicas. Vemos que é possível obter valores positivos para algumas das regiões observadas, servindo de forte indicativo de caos nestas regiões, em particular o tipo de caos denominado de duplamente transiente. Nossas escolhas de parâmetros para as equações tratadas numericamente foram feitas baseadas em observações qualitativas de um sistema experimental montado em laboratório.CNPqTransient chaos due to weak dissipation in dynamical Hamiltonian systems have been studied in the context of many natural systems in physics, biology, economy and astronomy. In this dissertation, we present a study on coupled oscillators in a pendula configuration, with the axis fixed to a rigid structure that is free to move horizontally. We named this set of coupled oscillators ’Huygens Pendula’, inspired by the coupled clocks system originally described by Christiaan Huygens in XVII century, where he observed for the first time the synchroniza- tion phenomenon. We assess the dynamics starting from a set of initial conditions with high angular velocity pendula, we also consider the dissipative effects of friction. Analyzing the time evolution, we notice that the system presents instabilities due to the pendula tendency to synchronize. Those instabilities appear as transient quasiperiodic and transient chaos re- gions. The numerical calculations are made following system trajectories to analyze the job of dissipation on those instabilities, as well as varying the coupling parameter to understand the effects on the observed behaviors. We numerically calculated the maximum finite time Lyapunov exponent of typical trajectories. We see that it is possible to obtain a positive value on some of the observed regions, serving as a strong indicator of chaos in those regions, in particular the so called doubly transient chaos. Our parameters choices are motivated for the numerical treatment are based on qualitative observations from an experimental system built in the laboratory.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em FisicaUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessCaos transienteCaos hamiltonianoPêndulos de HuygensLyapunovSincronizaçãoDinâmica de pêndulos de Huygensinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETEXTDISSERTAÇÃO Gustavo Gama Cambrainha de Albuquerque Dias.pdf.txtDISSERTAÇÃO Gustavo Gama Cambrainha de Albuquerque Dias.pdf.txtExtracted texttext/plain74183https://repositorio.ufpe.br/bitstream/123456789/46705/4/DISSERTA%c3%87%c3%83O%20Gustavo%20Gama%20Cambrainha%20de%20Albuquerque%20Dias.pdf.txtd79a5e517148faf23ceefb393425cc3fMD54THUMBNAILDISSERTAÇÃO Gustavo Gama Cambrainha de Albuquerque Dias.pdf.jpgDISSERTAÇÃO Gustavo Gama Cambrainha de Albuquerque Dias.pdf.jpgGenerated Thumbnailimage/jpeg1201https://repositorio.ufpe.br/bitstream/123456789/46705/5/DISSERTA%c3%87%c3%83O%20Gustavo%20Gama%20Cambrainha%20de%20Albuquerque%20Dias.pdf.jpg5dac108243761345370ecfd3a5050896MD55ORIGINALDISSERTAÇÃO Gustavo Gama Cambrainha de Albuquerque Dias.pdfDISSERTAÇÃO Gustavo Gama Cambrainha de Albuquerque Dias.pdfapplication/pdf2892716https://repositorio.ufpe.br/bitstream/123456789/46705/1/DISSERTA%c3%87%c3%83O%20Gustavo%20Gama%20Cambrainha%20de%20Albuquerque%20Dias.pdfc4543d995f90bbe73f5f7832caf1d443MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/46705/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82142https://repositorio.ufpe.br/bitstream/123456789/46705/3/license.txt6928b9260b07fb2755249a5ca9903395MD53123456789/467052022-09-24 02:39:48.314oai:repositorio.ufpe.br:123456789/46705VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBkZSBEb2N1bWVudG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUKIAoKRGVjbGFybyBlc3RhciBjaWVudGUgZGUgcXVlIGVzdGUgVGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyB0ZW0gbyBvYmpldGl2byBkZSBkaXZ1bGdhw6fDo28gZG9zIGRvY3VtZW50b3MgZGVwb3NpdGFkb3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBlIGRlY2xhcm8gcXVlOgoKSSAtICBvIGNvbnRlw7pkbyBkaXNwb25pYmlsaXphZG8gw6kgZGUgcmVzcG9uc2FiaWxpZGFkZSBkZSBzdWEgYXV0b3JpYTsKCklJIC0gbyBjb250ZcO6ZG8gw6kgb3JpZ2luYWwsIGUgc2UgbyB0cmFiYWxobyBlL291IHBhbGF2cmFzIGRlIG91dHJhcyBwZXNzb2FzIGZvcmFtIHV0aWxpemFkb3MsIGVzdGFzIGZvcmFtIGRldmlkYW1lbnRlIHJlY29uaGVjaWRhczsKCklJSSAtIHF1YW5kbyB0cmF0YXItc2UgZGUgVHJhYmFsaG8gZGUgQ29uY2x1c8OjbyBkZSBDdXJzbywgRGlzc2VydGHDp8OjbyBvdSBUZXNlOiBvIGFycXVpdm8gZGVwb3NpdGFkbyBjb3JyZXNwb25kZSDDoCB2ZXJzw6NvIGZpbmFsIGRvIHRyYWJhbGhvOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogZXN0b3UgY2llbnRlIGRlIHF1ZSBhIGFsdGVyYcOnw6NvIGRhIG1vZGFsaWRhZGUgZGUgYWNlc3NvIGFvIGRvY3VtZW50byBhcMOzcyBvIGRlcMOzc2l0byBlIGFudGVzIGRlIGZpbmRhciBvIHBlcsOtb2RvIGRlIGVtYmFyZ28sIHF1YW5kbyBmb3IgZXNjb2xoaWRvIGFjZXNzbyByZXN0cml0bywgc2Vyw6EgcGVybWl0aWRhIG1lZGlhbnRlIHNvbGljaXRhw6fDo28gZG8gKGEpIGF1dG9yIChhKSBhbyBTaXN0ZW1hIEludGVncmFkbyBkZSBCaWJsaW90ZWNhcyBkYSBVRlBFIChTSUIvVUZQRSkuCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBBYmVydG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBhcnQuIDI5LCBpbmNpc28gSUlJLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFBlcm5hbWJ1Y28gYSBkaXNwb25pYmlsaXphciBncmF0dWl0YW1lbnRlLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHBhcmEgZmlucyBkZSBsZWl0dXJhLCBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQgKGFxdWlzacOnw6NvKSBhdHJhdsOpcyBkbyBzaXRlIGRvIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgbm8gZW5kZXJlw6dvIGh0dHA6Ly93d3cucmVwb3NpdG9yaW8udWZwZS5iciwgYSBwYXJ0aXIgZGEgZGF0YSBkZSBkZXDDs3NpdG8uCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBSZXN0cml0bzoKCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBhdXRvciBxdWUgcmVjYWVtIHNvYnJlIGVzdGUgZG9jdW1lbnRvLCBmdW5kYW1lbnRhZG8gbmEgTGVpIGRlIERpcmVpdG8gQXV0b3JhbCBubyA5LjYxMCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIHF1YW5kbyBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvIGNvbmRpemVudGUgYW8gdGlwbyBkZSBkb2N1bWVudG8sIGNvbmZvcm1lIGluZGljYWRvIG5vIGNhbXBvIERhdGEgZGUgRW1iYXJnby4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-09-24T05:39:48Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Dinâmica de pêndulos de Huygens |
title |
Dinâmica de pêndulos de Huygens |
spellingShingle |
Dinâmica de pêndulos de Huygens DIAS, Gustavo Gama Cambrainha de Albuquerque Caos transiente Caos hamiltoniano Pêndulos de Huygens Lyapunov Sincronização |
title_short |
Dinâmica de pêndulos de Huygens |
title_full |
Dinâmica de pêndulos de Huygens |
title_fullStr |
Dinâmica de pêndulos de Huygens |
title_full_unstemmed |
Dinâmica de pêndulos de Huygens |
title_sort |
Dinâmica de pêndulos de Huygens |
author |
DIAS, Gustavo Gama Cambrainha de Albuquerque |
author_facet |
DIAS, Gustavo Gama Cambrainha de Albuquerque |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9447941220887388 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6237354847089624 |
dc.contributor.author.fl_str_mv |
DIAS, Gustavo Gama Cambrainha de Albuquerque |
dc.contributor.advisor1.fl_str_mv |
LEITE, José Roberto Rios |
contributor_str_mv |
LEITE, José Roberto Rios |
dc.subject.por.fl_str_mv |
Caos transiente Caos hamiltoniano Pêndulos de Huygens Lyapunov Sincronização |
topic |
Caos transiente Caos hamiltoniano Pêndulos de Huygens Lyapunov Sincronização |
description |
Caos transiente devido à fraca dissipação em sistemas dinâmicos hamiltonianos vem sendo estudado visando a compreensão de muitos sistemas naturais na física, biologia, economia e astronomia. Nesta dissertação apresentaremos um estudo de osciladores acoplados na confi- guração de pêndulos com seus eixos fixos a uma estrutura rígida e livre para mover-se ho- rizontalmente. Nomeamos este conjunto de osciladores de pêndulos de Huygens, motivados pelo sistema de relógios originalmente descrito por Christiaan Huygens no século XVII, onde ele observou pela primeira vez o fenômeno de sincronização. Avaliamos então a dinâmica a partir de condições iniciais com altas velocidades angulares nos pêndulos, também considera- mos os efeitos dissipativos de atrito. Ao realizar esta evolução no tempo percebemos que o sistema apresenta instabilidades devido à tendência de sincronização dos pêndulos entre si. Es- tas instabilidades apresentam-se na forma de bifurcações com regiões de quasi-periodicidade transiente assim como de caos transiente. Os cálculos numéricos são realizados seguindo a trajetória do sistema para analisar o papel das dissipações nestas instabilidades, assim como procuramos entender como o parâmetro de acoplamento dos pêndulos afeta os comportamen- tos observados. Calculamos numericamente o máximo expoente de Lyapunov de tempo finito ao longo de trajetórias típicas. Vemos que é possível obter valores positivos para algumas das regiões observadas, servindo de forte indicativo de caos nestas regiões, em particular o tipo de caos denominado de duplamente transiente. Nossas escolhas de parâmetros para as equações tratadas numericamente foram feitas baseadas em observações qualitativas de um sistema experimental montado em laboratório. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-09-23T14:26:16Z |
dc.date.available.fl_str_mv |
2022-09-23T14:26:16Z |
dc.date.issued.fl_str_mv |
2022-06-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
DIAS, Gustavo Gama Cambrainha de Albuquerque. Dinâmica de pêndulos de Huygens. 2022. Dissertação (Mestrado em Física) - Universidade Federal de Pernambuco, Recife, 2022. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/46705 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000svmd |
identifier_str_mv |
DIAS, Gustavo Gama Cambrainha de Albuquerque. Dinâmica de pêndulos de Huygens. 2022. Dissertação (Mestrado em Física) - Universidade Federal de Pernambuco, Recife, 2022. ark:/64986/001300000svmd |
url |
https://repositorio.ufpe.br/handle/123456789/46705 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
embargoedAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Fisica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/46705/4/DISSERTA%c3%87%c3%83O%20Gustavo%20Gama%20Cambrainha%20de%20Albuquerque%20Dias.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/46705/5/DISSERTA%c3%87%c3%83O%20Gustavo%20Gama%20Cambrainha%20de%20Albuquerque%20Dias.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/46705/1/DISSERTA%c3%87%c3%83O%20Gustavo%20Gama%20Cambrainha%20de%20Albuquerque%20Dias.pdf https://repositorio.ufpe.br/bitstream/123456789/46705/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/46705/3/license.txt |
bitstream.checksum.fl_str_mv |
d79a5e517148faf23ceefb393425cc3f 5dac108243761345370ecfd3a5050896 c4543d995f90bbe73f5f7832caf1d443 e39d27027a6cc9cb039ad269a5db8e34 6928b9260b07fb2755249a5ca9903395 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172909045383168 |