Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Boletim de Ciências Geodésicas |
Texto Completo: | https://revistas.ufpr.br/bcg/article/view/8243 |
Resumo: | The great diversity of materials that characterizes the urban environment determinesa structure of mixed classes in a classification of multiespectral images. In thatsense, it is important to define an appropriate classification system using a nonparametric classifier, that allows incorporating non spectral (such as texture) data tothe process. They also allow analyzing the uncertainty associated to each class fromthe output values of the network calculated in relation to each class. Consideringthese properties, an experiment was carried out. This experiment consisted in theapplication of an Artificial Neural Network aiming at the classification of the urbanland cover of Presidente Prudente and the analysis of the uncertainty in therepresentation of the mapped thematic classes. The results showed that it is possibleto discriminate the variations in the urban land cover through the application of anArtificial Neural Network. It was also possible to visualize the spatial variation ofthe uncertainty in the attribution of classes of urban land cover from the generatedrepresentations. The class characterized by a defined pattern as intermediary relatedto the impermeability of the urban soil presented larger ambiguity degree and,therefore, larger mixture.Keywords: Classification of urban environment, Artificial Neural Networks,Uncertainty in the classification, Remote Sensing. |
id |
UFPR-2_7fd8606da8d645d47dc24eb86897567c |
---|---|
oai_identifier_str |
oai:revistas.ufpr.br:article/8243 |
network_acronym_str |
UFPR-2 |
network_name_str |
Boletim de Ciências Geodésicas |
repository_id_str |
|
spelling |
Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural networkANÁLISE DA INCERTEZA NA REPRESENTAÇÃO DE CLASSES DE COBERTURA DO SOLO URBANO RESULTANTES DA APLICAÇÃO DE UMA REDE NEURAL ARTIFICIALClassificação de ambientes urbanos, Redes Neurais Artificiais, Incerteza na classificação, Sensoriamento Remoto; Classification of urban environment, Artificial Neural Networks, Uncertainty in the classification, Remote SensingThe great diversity of materials that characterizes the urban environment determinesa structure of mixed classes in a classification of multiespectral images. In thatsense, it is important to define an appropriate classification system using a nonparametric classifier, that allows incorporating non spectral (such as texture) data tothe process. They also allow analyzing the uncertainty associated to each class fromthe output values of the network calculated in relation to each class. Consideringthese properties, an experiment was carried out. This experiment consisted in theapplication of an Artificial Neural Network aiming at the classification of the urbanland cover of Presidente Prudente and the analysis of the uncertainty in therepresentation of the mapped thematic classes. The results showed that it is possibleto discriminate the variations in the urban land cover through the application of anArtificial Neural Network. It was also possible to visualize the spatial variation ofthe uncertainty in the attribution of classes of urban land cover from the generatedrepresentations. The class characterized by a defined pattern as intermediary relatedto the impermeability of the urban soil presented larger ambiguity degree and,therefore, larger mixture.Keywords: Classification of urban environment, Artificial Neural Networks,Uncertainty in the classification, Remote Sensing.A diversidade de materiais nos ambientes urbanos determina uma estrutura declasses misturadas na classificação a partir de imagens multiespectrais. Nessesentido, é importante definir um sistema de classificação utilizando um classificadornão paramétrico, que permita incorporar dados de natureza não espectral, como osmodelos de redes neurais artificiais. A partir dos valores de saída da rede,calculados em relação a cada classe, é possível analisar a incerteza associada a cadauma. Portanto, desenvolveu-se um experimento que utilizou a técnica de rede neuralpara a classificação da cobertura do solo urbano de Presidente Prudente e da análiseda incerteza na representação das classes temáticas mapeadas. Os resultadosmostraram que é possível discriminar as variações na cobertura do solo urbanoatravés da aplicação de redes neurais artificiais e, a partir das representaçõesgeradas visualizar a variação espacial das incertezas na atribuição de classes, bemcomo, verificar que as classes apresentam ambigüidades em função da definição dospadrões de cobertura.Boletim de Ciências GeodésicasBulletin of Geodetic Sciences2007-07-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufpr.br/bcg/article/view/8243Boletim de Ciências Geodésicas; Vol 13, No 1 (2007)Bulletin of Geodetic Sciences; Vol 13, No 1 (2007)1982-21701413-4853reponame:Boletim de Ciências Geodésicasinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRporhttps://revistas.ufpr.br/bcg/article/view/8243/5762Boschi, Letícia SaboGalo, Maria de Lourdes Bueno Trindadeinfo:eu-repo/semantics/openAccess2007-07-03T20:11:55Zoai:revistas.ufpr.br:article/8243Revistahttps://revistas.ufpr.br/bcgPUBhttps://revistas.ufpr.br/bcg/oaiqdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br1982-21701413-4853opendoar:2007-07-03T20:11:55Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)false |
dc.title.none.fl_str_mv |
Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network ANÁLISE DA INCERTEZA NA REPRESENTAÇÃO DE CLASSES DE COBERTURA DO SOLO URBANO RESULTANTES DA APLICAÇÃO DE UMA REDE NEURAL ARTIFICIAL |
title |
Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network |
spellingShingle |
Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network Boschi, Letícia Sabo Classificação de ambientes urbanos, Redes Neurais Artificiais, Incerteza na classificação, Sensoriamento Remoto; Classification of urban environment, Artificial Neural Networks, Uncertainty in the classification, Remote Sensing |
title_short |
Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network |
title_full |
Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network |
title_fullStr |
Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network |
title_full_unstemmed |
Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network |
title_sort |
Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network |
author |
Boschi, Letícia Sabo |
author_facet |
Boschi, Letícia Sabo Galo, Maria de Lourdes Bueno Trindade |
author_role |
author |
author2 |
Galo, Maria de Lourdes Bueno Trindade |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Boschi, Letícia Sabo Galo, Maria de Lourdes Bueno Trindade |
dc.subject.por.fl_str_mv |
Classificação de ambientes urbanos, Redes Neurais Artificiais, Incerteza na classificação, Sensoriamento Remoto; Classification of urban environment, Artificial Neural Networks, Uncertainty in the classification, Remote Sensing |
topic |
Classificação de ambientes urbanos, Redes Neurais Artificiais, Incerteza na classificação, Sensoriamento Remoto; Classification of urban environment, Artificial Neural Networks, Uncertainty in the classification, Remote Sensing |
description |
The great diversity of materials that characterizes the urban environment determinesa structure of mixed classes in a classification of multiespectral images. In thatsense, it is important to define an appropriate classification system using a nonparametric classifier, that allows incorporating non spectral (such as texture) data tothe process. They also allow analyzing the uncertainty associated to each class fromthe output values of the network calculated in relation to each class. Consideringthese properties, an experiment was carried out. This experiment consisted in theapplication of an Artificial Neural Network aiming at the classification of the urbanland cover of Presidente Prudente and the analysis of the uncertainty in therepresentation of the mapped thematic classes. The results showed that it is possibleto discriminate the variations in the urban land cover through the application of anArtificial Neural Network. It was also possible to visualize the spatial variation ofthe uncertainty in the attribution of classes of urban land cover from the generatedrepresentations. The class characterized by a defined pattern as intermediary relatedto the impermeability of the urban soil presented larger ambiguity degree and,therefore, larger mixture.Keywords: Classification of urban environment, Artificial Neural Networks,Uncertainty in the classification, Remote Sensing. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-07-03 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufpr.br/bcg/article/view/8243 |
url |
https://revistas.ufpr.br/bcg/article/view/8243 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.ufpr.br/bcg/article/view/8243/5762 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Boletim de Ciências Geodésicas Bulletin of Geodetic Sciences |
publisher.none.fl_str_mv |
Boletim de Ciências Geodésicas Bulletin of Geodetic Sciences |
dc.source.none.fl_str_mv |
Boletim de Ciências Geodésicas; Vol 13, No 1 (2007) Bulletin of Geodetic Sciences; Vol 13, No 1 (2007) 1982-2170 1413-4853 reponame:Boletim de Ciências Geodésicas instname:Universidade Federal do Paraná (UFPR) instacron:UFPR |
instname_str |
Universidade Federal do Paraná (UFPR) |
instacron_str |
UFPR |
institution |
UFPR |
reponame_str |
Boletim de Ciências Geodésicas |
collection |
Boletim de Ciências Geodésicas |
repository.name.fl_str_mv |
Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR) |
repository.mail.fl_str_mv |
qdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br |
_version_ |
1799771721784360960 |