Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network

Detalhes bibliográficos
Autor(a) principal: Boschi, Letícia Sabo
Data de Publicação: 2007
Outros Autores: Galo, Maria de Lourdes Bueno Trindade
Tipo de documento: Artigo
Idioma: por
Título da fonte: Boletim de Ciências Geodésicas
Texto Completo: https://revistas.ufpr.br/bcg/article/view/8243
Resumo: The great diversity of materials that characterizes the urban environment determinesa structure of mixed classes in a classification of multiespectral images. In thatsense, it is important to define an appropriate classification system using a nonparametric classifier, that allows incorporating non spectral (such as texture) data tothe process. They also allow analyzing the uncertainty associated to each class fromthe output values of the network calculated in relation to each class. Consideringthese properties, an experiment was carried out. This experiment consisted in theapplication of an Artificial Neural Network aiming at the classification of the urbanland cover of Presidente Prudente and the analysis of the uncertainty in therepresentation of the mapped thematic classes. The results showed that it is possibleto discriminate the variations in the urban land cover through the application of anArtificial Neural Network. It was also possible to visualize the spatial variation ofthe uncertainty in the attribution of classes of urban land cover from the generatedrepresentations. The class characterized by a defined pattern as intermediary relatedto the impermeability of the urban soil presented larger ambiguity degree and,therefore, larger mixture.Keywords: Classification of urban environment, Artificial Neural Networks,Uncertainty in the classification, Remote Sensing.
id UFPR-2_7fd8606da8d645d47dc24eb86897567c
oai_identifier_str oai:revistas.ufpr.br:article/8243
network_acronym_str UFPR-2
network_name_str Boletim de Ciências Geodésicas
repository_id_str
spelling Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural networkANÁLISE DA INCERTEZA NA REPRESENTAÇÃO DE CLASSES DE COBERTURA DO SOLO URBANO RESULTANTES DA APLICAÇÃO DE UMA REDE NEURAL ARTIFICIALClassificação de ambientes urbanos, Redes Neurais Artificiais, Incerteza na classificação, Sensoriamento Remoto; Classification of urban environment, Artificial Neural Networks, Uncertainty in the classification, Remote SensingThe great diversity of materials that characterizes the urban environment determinesa structure of mixed classes in a classification of multiespectral images. In thatsense, it is important to define an appropriate classification system using a nonparametric classifier, that allows incorporating non spectral (such as texture) data tothe process. They also allow analyzing the uncertainty associated to each class fromthe output values of the network calculated in relation to each class. Consideringthese properties, an experiment was carried out. This experiment consisted in theapplication of an Artificial Neural Network aiming at the classification of the urbanland cover of Presidente Prudente and the analysis of the uncertainty in therepresentation of the mapped thematic classes. The results showed that it is possibleto discriminate the variations in the urban land cover through the application of anArtificial Neural Network. It was also possible to visualize the spatial variation ofthe uncertainty in the attribution of classes of urban land cover from the generatedrepresentations. The class characterized by a defined pattern as intermediary relatedto the impermeability of the urban soil presented larger ambiguity degree and,therefore, larger mixture.Keywords: Classification of urban environment, Artificial Neural Networks,Uncertainty in the classification, Remote Sensing.A diversidade de materiais nos ambientes urbanos determina uma estrutura declasses misturadas na classificação a partir de imagens multiespectrais. Nessesentido, é importante definir um sistema de classificação utilizando um classificadornão paramétrico, que permita incorporar dados de natureza não espectral, como osmodelos de redes neurais artificiais. A partir dos valores de saída da rede,calculados em relação a cada classe, é possível analisar a incerteza associada a cadauma. Portanto, desenvolveu-se um experimento que utilizou a técnica de rede neuralpara a classificação da cobertura do solo urbano de Presidente Prudente e da análiseda incerteza na representação das classes temáticas mapeadas. Os resultadosmostraram que é possível discriminar as variações na cobertura do solo urbanoatravés da aplicação de redes neurais artificiais e, a partir das representaçõesgeradas visualizar a variação espacial das incertezas na atribuição de classes, bemcomo, verificar que as classes apresentam ambigüidades em função da definição dospadrões de cobertura.Boletim de Ciências GeodésicasBulletin of Geodetic Sciences2007-07-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufpr.br/bcg/article/view/8243Boletim de Ciências Geodésicas; Vol 13, No 1 (2007)Bulletin of Geodetic Sciences; Vol 13, No 1 (2007)1982-21701413-4853reponame:Boletim de Ciências Geodésicasinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRporhttps://revistas.ufpr.br/bcg/article/view/8243/5762Boschi, Letícia SaboGalo, Maria de Lourdes Bueno Trindadeinfo:eu-repo/semantics/openAccess2007-07-03T20:11:55Zoai:revistas.ufpr.br:article/8243Revistahttps://revistas.ufpr.br/bcgPUBhttps://revistas.ufpr.br/bcg/oaiqdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br1982-21701413-4853opendoar:2007-07-03T20:11:55Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)false
dc.title.none.fl_str_mv Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network
ANÁLISE DA INCERTEZA NA REPRESENTAÇÃO DE CLASSES DE COBERTURA DO SOLO URBANO RESULTANTES DA APLICAÇÃO DE UMA REDE NEURAL ARTIFICIAL
title Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network
spellingShingle Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network
Boschi, Letícia Sabo
Classificação de ambientes urbanos, Redes Neurais Artificiais, Incerteza na classificação, Sensoriamento Remoto; Classification of urban environment, Artificial Neural Networks, Uncertainty in the classification, Remote Sensing
title_short Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network
title_full Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network
title_fullStr Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network
title_full_unstemmed Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network
title_sort Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network
author Boschi, Letícia Sabo
author_facet Boschi, Letícia Sabo
Galo, Maria de Lourdes Bueno Trindade
author_role author
author2 Galo, Maria de Lourdes Bueno Trindade
author2_role author
dc.contributor.author.fl_str_mv Boschi, Letícia Sabo
Galo, Maria de Lourdes Bueno Trindade
dc.subject.por.fl_str_mv Classificação de ambientes urbanos, Redes Neurais Artificiais, Incerteza na classificação, Sensoriamento Remoto; Classification of urban environment, Artificial Neural Networks, Uncertainty in the classification, Remote Sensing
topic Classificação de ambientes urbanos, Redes Neurais Artificiais, Incerteza na classificação, Sensoriamento Remoto; Classification of urban environment, Artificial Neural Networks, Uncertainty in the classification, Remote Sensing
description The great diversity of materials that characterizes the urban environment determinesa structure of mixed classes in a classification of multiespectral images. In thatsense, it is important to define an appropriate classification system using a nonparametric classifier, that allows incorporating non spectral (such as texture) data tothe process. They also allow analyzing the uncertainty associated to each class fromthe output values of the network calculated in relation to each class. Consideringthese properties, an experiment was carried out. This experiment consisted in theapplication of an Artificial Neural Network aiming at the classification of the urbanland cover of Presidente Prudente and the analysis of the uncertainty in therepresentation of the mapped thematic classes. The results showed that it is possibleto discriminate the variations in the urban land cover through the application of anArtificial Neural Network. It was also possible to visualize the spatial variation ofthe uncertainty in the attribution of classes of urban land cover from the generatedrepresentations. The class characterized by a defined pattern as intermediary relatedto the impermeability of the urban soil presented larger ambiguity degree and,therefore, larger mixture.Keywords: Classification of urban environment, Artificial Neural Networks,Uncertainty in the classification, Remote Sensing.
publishDate 2007
dc.date.none.fl_str_mv 2007-07-03
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufpr.br/bcg/article/view/8243
url https://revistas.ufpr.br/bcg/article/view/8243
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistas.ufpr.br/bcg/article/view/8243/5762
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Boletim de Ciências Geodésicas
Bulletin of Geodetic Sciences
publisher.none.fl_str_mv Boletim de Ciências Geodésicas
Bulletin of Geodetic Sciences
dc.source.none.fl_str_mv Boletim de Ciências Geodésicas; Vol 13, No 1 (2007)
Bulletin of Geodetic Sciences; Vol 13, No 1 (2007)
1982-2170
1413-4853
reponame:Boletim de Ciências Geodésicas
instname:Universidade Federal do Paraná (UFPR)
instacron:UFPR
instname_str Universidade Federal do Paraná (UFPR)
instacron_str UFPR
institution UFPR
reponame_str Boletim de Ciências Geodésicas
collection Boletim de Ciências Geodésicas
repository.name.fl_str_mv Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)
repository.mail.fl_str_mv qdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br
_version_ 1799771721784360960