Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://ojs.c3sl.ufpr.br/ojs/index.php/bcg/article/view/8243 http://hdl.handle.net/11449/69494 |
Resumo: | The great diversity of materials that characterizes the urban environment determines a structure of mixed classes in a classification of multiespectral images. In that sense, it is important to define an appropriate classification system using a non parametric classifier, that allows incorporating non spectral (such as texture) data to the process. They also allow analyzing the uncertainty associated to each class from the output alues of the network calculated in relation to each class. Considering these properties, an experiment was carried out. This experiment consisted in the application of an Artificial Neural Network aiming at the classification of the urban land cover of Presidente Prudente and the analysis of the uncertainty in the representation of the mapped thematic classes. The results showed that it is possible to discriminate the variations in the urban land cover through the application of an Artificial Neural Network. It was also possible to visualize the spatial variation of the uncertainty in the attribution of classes of urban land cover from the generated representations. The class characterized by a defined pattern as intermediary related to the impermeability of the urban soil presented larger ambiguity degree and, therefore, larger mixture. |
id |
UNSP_f74dcd39d8e6da6061ece34d32d73532 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/69494 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificialUncertainty analysis in the representation of the urban land cover classes through the application of artificial neural networkArtificial Neural NetworksClassification of urban environmentRemote SensingUncertainty in the classificationartificial neural networkimage classificationland coverspatial variationspectral analysistexturethematic mappinguncertainty analysisvisualizationThe great diversity of materials that characterizes the urban environment determines a structure of mixed classes in a classification of multiespectral images. In that sense, it is important to define an appropriate classification system using a non parametric classifier, that allows incorporating non spectral (such as texture) data to the process. They also allow analyzing the uncertainty associated to each class from the output alues of the network calculated in relation to each class. Considering these properties, an experiment was carried out. This experiment consisted in the application of an Artificial Neural Network aiming at the classification of the urban land cover of Presidente Prudente and the analysis of the uncertainty in the representation of the mapped thematic classes. The results showed that it is possible to discriminate the variations in the urban land cover through the application of an Artificial Neural Network. It was also possible to visualize the spatial variation of the uncertainty in the attribution of classes of urban land cover from the generated representations. The class characterized by a defined pattern as intermediary related to the impermeability of the urban soil presented larger ambiguity degree and, therefore, larger mixture.Universidade Estadual Paulista Programa de Pós-Graduação em Ciências Cartográficas, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SPUniversidade Estadual Paulista Faculdade de Ciência e Tecnologia Depto de Cartografia, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SPUniversidade Estadual Paulista Programa de Pós-Graduação em Ciências Cartográficas, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SPUniversidade Estadual Paulista Faculdade de Ciência e Tecnologia Depto de Cartografia, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SPUniversidade Estadual Paulista (Unesp)Boschi, Letícia Sabo [UNESP]Galo, Maria de Lourdes Bueno Trindade [UNESP]2014-05-27T11:22:23Z2014-05-27T11:22:23Z2007-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article22-41application/pdfhttp://ojs.c3sl.ufpr.br/ojs/index.php/bcg/article/view/8243Boletim de Ciencias Geodesicas, v. 13, n. 1, p. 22-41, 2007.1413-4853http://hdl.handle.net/11449/694942-s2.0-365490668842-s2.0-36549066884.pdf16473186442995619070577381094673894715226925471Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporBoletim de Ciências Geodésicas0,188info:eu-repo/semantics/openAccess2024-06-18T15:01:38Zoai:repositorio.unesp.br:11449/69494Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:11:54.054908Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network |
title |
Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial |
spellingShingle |
Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial Boschi, Letícia Sabo [UNESP] Artificial Neural Networks Classification of urban environment Remote Sensing Uncertainty in the classification artificial neural network image classification land cover spatial variation spectral analysis texture thematic mapping uncertainty analysis visualization |
title_short |
Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial |
title_full |
Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial |
title_fullStr |
Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial |
title_full_unstemmed |
Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial |
title_sort |
Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial |
author |
Boschi, Letícia Sabo [UNESP] |
author_facet |
Boschi, Letícia Sabo [UNESP] Galo, Maria de Lourdes Bueno Trindade [UNESP] |
author_role |
author |
author2 |
Galo, Maria de Lourdes Bueno Trindade [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Boschi, Letícia Sabo [UNESP] Galo, Maria de Lourdes Bueno Trindade [UNESP] |
dc.subject.por.fl_str_mv |
Artificial Neural Networks Classification of urban environment Remote Sensing Uncertainty in the classification artificial neural network image classification land cover spatial variation spectral analysis texture thematic mapping uncertainty analysis visualization |
topic |
Artificial Neural Networks Classification of urban environment Remote Sensing Uncertainty in the classification artificial neural network image classification land cover spatial variation spectral analysis texture thematic mapping uncertainty analysis visualization |
description |
The great diversity of materials that characterizes the urban environment determines a structure of mixed classes in a classification of multiespectral images. In that sense, it is important to define an appropriate classification system using a non parametric classifier, that allows incorporating non spectral (such as texture) data to the process. They also allow analyzing the uncertainty associated to each class from the output alues of the network calculated in relation to each class. Considering these properties, an experiment was carried out. This experiment consisted in the application of an Artificial Neural Network aiming at the classification of the urban land cover of Presidente Prudente and the analysis of the uncertainty in the representation of the mapped thematic classes. The results showed that it is possible to discriminate the variations in the urban land cover through the application of an Artificial Neural Network. It was also possible to visualize the spatial variation of the uncertainty in the attribution of classes of urban land cover from the generated representations. The class characterized by a defined pattern as intermediary related to the impermeability of the urban soil presented larger ambiguity degree and, therefore, larger mixture. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01-01 2014-05-27T11:22:23Z 2014-05-27T11:22:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://ojs.c3sl.ufpr.br/ojs/index.php/bcg/article/view/8243 Boletim de Ciencias Geodesicas, v. 13, n. 1, p. 22-41, 2007. 1413-4853 http://hdl.handle.net/11449/69494 2-s2.0-36549066884 2-s2.0-36549066884.pdf 1647318644299561 9070577381094673 894715226925471 |
url |
http://ojs.c3sl.ufpr.br/ojs/index.php/bcg/article/view/8243 http://hdl.handle.net/11449/69494 |
identifier_str_mv |
Boletim de Ciencias Geodesicas, v. 13, n. 1, p. 22-41, 2007. 1413-4853 2-s2.0-36549066884 2-s2.0-36549066884.pdf 1647318644299561 9070577381094673 894715226925471 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Boletim de Ciências Geodésicas 0,188 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
22-41 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128907098980352 |