Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial

Detalhes bibliográficos
Autor(a) principal: Boschi, Letícia Sabo [UNESP]
Data de Publicação: 2007
Outros Autores: Galo, Maria de Lourdes Bueno Trindade [UNESP]
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://ojs.c3sl.ufpr.br/ojs/index.php/bcg/article/view/8243
http://hdl.handle.net/11449/69494
Resumo: The great diversity of materials that characterizes the urban environment determines a structure of mixed classes in a classification of multiespectral images. In that sense, it is important to define an appropriate classification system using a non parametric classifier, that allows incorporating non spectral (such as texture) data to the process. They also allow analyzing the uncertainty associated to each class from the output alues of the network calculated in relation to each class. Considering these properties, an experiment was carried out. This experiment consisted in the application of an Artificial Neural Network aiming at the classification of the urban land cover of Presidente Prudente and the analysis of the uncertainty in the representation of the mapped thematic classes. The results showed that it is possible to discriminate the variations in the urban land cover through the application of an Artificial Neural Network. It was also possible to visualize the spatial variation of the uncertainty in the attribution of classes of urban land cover from the generated representations. The class characterized by a defined pattern as intermediary related to the impermeability of the urban soil presented larger ambiguity degree and, therefore, larger mixture.
id UNSP_f74dcd39d8e6da6061ece34d32d73532
oai_identifier_str oai:repositorio.unesp.br:11449/69494
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificialUncertainty analysis in the representation of the urban land cover classes through the application of artificial neural networkArtificial Neural NetworksClassification of urban environmentRemote SensingUncertainty in the classificationartificial neural networkimage classificationland coverspatial variationspectral analysistexturethematic mappinguncertainty analysisvisualizationThe great diversity of materials that characterizes the urban environment determines a structure of mixed classes in a classification of multiespectral images. In that sense, it is important to define an appropriate classification system using a non parametric classifier, that allows incorporating non spectral (such as texture) data to the process. They also allow analyzing the uncertainty associated to each class from the output alues of the network calculated in relation to each class. Considering these properties, an experiment was carried out. This experiment consisted in the application of an Artificial Neural Network aiming at the classification of the urban land cover of Presidente Prudente and the analysis of the uncertainty in the representation of the mapped thematic classes. The results showed that it is possible to discriminate the variations in the urban land cover through the application of an Artificial Neural Network. It was also possible to visualize the spatial variation of the uncertainty in the attribution of classes of urban land cover from the generated representations. The class characterized by a defined pattern as intermediary related to the impermeability of the urban soil presented larger ambiguity degree and, therefore, larger mixture.Universidade Estadual Paulista Programa de Pós-Graduação em Ciências Cartográficas, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SPUniversidade Estadual Paulista Faculdade de Ciência e Tecnologia Depto de Cartografia, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SPUniversidade Estadual Paulista Programa de Pós-Graduação em Ciências Cartográficas, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SPUniversidade Estadual Paulista Faculdade de Ciência e Tecnologia Depto de Cartografia, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SPUniversidade Estadual Paulista (Unesp)Boschi, Letícia Sabo [UNESP]Galo, Maria de Lourdes Bueno Trindade [UNESP]2014-05-27T11:22:23Z2014-05-27T11:22:23Z2007-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article22-41application/pdfhttp://ojs.c3sl.ufpr.br/ojs/index.php/bcg/article/view/8243Boletim de Ciencias Geodesicas, v. 13, n. 1, p. 22-41, 2007.1413-4853http://hdl.handle.net/11449/694942-s2.0-365490668842-s2.0-36549066884.pdf16473186442995619070577381094673894715226925471Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporBoletim de Ciências Geodésicas0,188info:eu-repo/semantics/openAccess2024-06-18T15:01:38Zoai:repositorio.unesp.br:11449/69494Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:11:54.054908Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial
Uncertainty analysis in the representation of the urban land cover classes through the application of artificial neural network
title Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial
spellingShingle Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial
Boschi, Letícia Sabo [UNESP]
Artificial Neural Networks
Classification of urban environment
Remote Sensing
Uncertainty in the classification
artificial neural network
image classification
land cover
spatial variation
spectral analysis
texture
thematic mapping
uncertainty analysis
visualization
title_short Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial
title_full Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial
title_fullStr Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial
title_full_unstemmed Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial
title_sort Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial
author Boschi, Letícia Sabo [UNESP]
author_facet Boschi, Letícia Sabo [UNESP]
Galo, Maria de Lourdes Bueno Trindade [UNESP]
author_role author
author2 Galo, Maria de Lourdes Bueno Trindade [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Boschi, Letícia Sabo [UNESP]
Galo, Maria de Lourdes Bueno Trindade [UNESP]
dc.subject.por.fl_str_mv Artificial Neural Networks
Classification of urban environment
Remote Sensing
Uncertainty in the classification
artificial neural network
image classification
land cover
spatial variation
spectral analysis
texture
thematic mapping
uncertainty analysis
visualization
topic Artificial Neural Networks
Classification of urban environment
Remote Sensing
Uncertainty in the classification
artificial neural network
image classification
land cover
spatial variation
spectral analysis
texture
thematic mapping
uncertainty analysis
visualization
description The great diversity of materials that characterizes the urban environment determines a structure of mixed classes in a classification of multiespectral images. In that sense, it is important to define an appropriate classification system using a non parametric classifier, that allows incorporating non spectral (such as texture) data to the process. They also allow analyzing the uncertainty associated to each class from the output alues of the network calculated in relation to each class. Considering these properties, an experiment was carried out. This experiment consisted in the application of an Artificial Neural Network aiming at the classification of the urban land cover of Presidente Prudente and the analysis of the uncertainty in the representation of the mapped thematic classes. The results showed that it is possible to discriminate the variations in the urban land cover through the application of an Artificial Neural Network. It was also possible to visualize the spatial variation of the uncertainty in the attribution of classes of urban land cover from the generated representations. The class characterized by a defined pattern as intermediary related to the impermeability of the urban soil presented larger ambiguity degree and, therefore, larger mixture.
publishDate 2007
dc.date.none.fl_str_mv 2007-01-01
2014-05-27T11:22:23Z
2014-05-27T11:22:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://ojs.c3sl.ufpr.br/ojs/index.php/bcg/article/view/8243
Boletim de Ciencias Geodesicas, v. 13, n. 1, p. 22-41, 2007.
1413-4853
http://hdl.handle.net/11449/69494
2-s2.0-36549066884
2-s2.0-36549066884.pdf
1647318644299561
9070577381094673
894715226925471
url http://ojs.c3sl.ufpr.br/ojs/index.php/bcg/article/view/8243
http://hdl.handle.net/11449/69494
identifier_str_mv Boletim de Ciencias Geodesicas, v. 13, n. 1, p. 22-41, 2007.
1413-4853
2-s2.0-36549066884
2-s2.0-36549066884.pdf
1647318644299561
9070577381094673
894715226925471
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Boletim de Ciências Geodésicas
0,188
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 22-41
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128907098980352