ARTIFICIAL NEURAL NETWORKS PRUNING APPROACH FOR GEODETIC VELOCITY FIELD DETERMINATION

Detalhes bibliográficos
Autor(a) principal: YILMAZ, MUSTAFA
Data de Publicação: 2013
Tipo de documento: Artigo
Idioma: por
Título da fonte: Boletim de Ciências Geodésicas
Texto Completo: https://revistas.ufpr.br/bcg/article/view/34873
Resumo: There has been a need for geodetic network densification since the early days oftraditional surveying. In order to densify geodetic networks in a way that willproduce the most effective reference frame improvements, the crustal velocity fieldmust be modelled. Artificial Neural Networks (ANNs) are widely used as functionapproximators in diverse fields of geoinformatics including velocity fielddetermination. Deciding the number of hidden neurons required for theimplementation of an arbitrary function is one of the major problems of ANN thatstill deserves further exploration. Generally, the number of hidden neurons isdecided on the basis of experience. This paper attempts to quantify the significanceof pruning away hidden neurons in ANN architecture for velocity fielddetermination. An initial back propagation artificial neural network (BPANN) with30 hidden neurons is educated by training data and resultant BPANN is applied ontest and validation data. The number of hidden neurons is subsequently decreased,in pairs from 30 to 2, to achieve the best predicting model. These pruned BPANNsare retrained and applied on the test and validation data. Some existing methods forselecting the number of hidden neurons are also used. The results are evaluated interms of the root mean square error (RMSE) over a study area for optimizing thenumber of hidden neurons in estimating densification point velocity by BPANN.
id UFPR-2_d7e60d6f6f0993d155397ba865535d3a
oai_identifier_str oai:revistas.ufpr.br:article/34873
network_acronym_str UFPR-2
network_name_str Boletim de Ciências Geodésicas
repository_id_str
spelling ARTIFICIAL NEURAL NETWORKS PRUNING APPROACH FOR GEODETIC VELOCITY FIELD DETERMINATIONGeociências; GeodésiaGeodésiaThere has been a need for geodetic network densification since the early days oftraditional surveying. In order to densify geodetic networks in a way that willproduce the most effective reference frame improvements, the crustal velocity fieldmust be modelled. Artificial Neural Networks (ANNs) are widely used as functionapproximators in diverse fields of geoinformatics including velocity fielddetermination. Deciding the number of hidden neurons required for theimplementation of an arbitrary function is one of the major problems of ANN thatstill deserves further exploration. Generally, the number of hidden neurons isdecided on the basis of experience. This paper attempts to quantify the significanceof pruning away hidden neurons in ANN architecture for velocity fielddetermination. An initial back propagation artificial neural network (BPANN) with30 hidden neurons is educated by training data and resultant BPANN is applied ontest and validation data. The number of hidden neurons is subsequently decreased,in pairs from 30 to 2, to achieve the best predicting model. These pruned BPANNsare retrained and applied on the test and validation data. Some existing methods forselecting the number of hidden neurons are also used. The results are evaluated interms of the root mean square error (RMSE) over a study area for optimizing thenumber of hidden neurons in estimating densification point velocity by BPANN.Boletim de Ciências GeodésicasBulletin of Geodetic SciencesYILMAZ, MUSTAFA2013-12-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufpr.br/bcg/article/view/34873Boletim de Ciências Geodésicas; Vol 19, No 4 (2013)Bulletin of Geodetic Sciences; Vol 19, No 4 (2013)1982-21701413-4853reponame:Boletim de Ciências Geodésicasinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRporhttps://revistas.ufpr.br/bcg/article/view/34873/21641info:eu-repo/semantics/openAccess2013-12-20T20:16:12Zoai:revistas.ufpr.br:article/34873Revistahttps://revistas.ufpr.br/bcgPUBhttps://revistas.ufpr.br/bcg/oaiqdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br1982-21701413-4853opendoar:2013-12-20T20:16:12Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)false
dc.title.none.fl_str_mv ARTIFICIAL NEURAL NETWORKS PRUNING APPROACH FOR GEODETIC VELOCITY FIELD DETERMINATION
title ARTIFICIAL NEURAL NETWORKS PRUNING APPROACH FOR GEODETIC VELOCITY FIELD DETERMINATION
spellingShingle ARTIFICIAL NEURAL NETWORKS PRUNING APPROACH FOR GEODETIC VELOCITY FIELD DETERMINATION
YILMAZ, MUSTAFA
Geociências; Geodésia
Geodésia
title_short ARTIFICIAL NEURAL NETWORKS PRUNING APPROACH FOR GEODETIC VELOCITY FIELD DETERMINATION
title_full ARTIFICIAL NEURAL NETWORKS PRUNING APPROACH FOR GEODETIC VELOCITY FIELD DETERMINATION
title_fullStr ARTIFICIAL NEURAL NETWORKS PRUNING APPROACH FOR GEODETIC VELOCITY FIELD DETERMINATION
title_full_unstemmed ARTIFICIAL NEURAL NETWORKS PRUNING APPROACH FOR GEODETIC VELOCITY FIELD DETERMINATION
title_sort ARTIFICIAL NEURAL NETWORKS PRUNING APPROACH FOR GEODETIC VELOCITY FIELD DETERMINATION
author YILMAZ, MUSTAFA
author_facet YILMAZ, MUSTAFA
author_role author
dc.contributor.none.fl_str_mv
dc.contributor.author.fl_str_mv YILMAZ, MUSTAFA
dc.subject.por.fl_str_mv Geociências; Geodésia
Geodésia
topic Geociências; Geodésia
Geodésia
description There has been a need for geodetic network densification since the early days oftraditional surveying. In order to densify geodetic networks in a way that willproduce the most effective reference frame improvements, the crustal velocity fieldmust be modelled. Artificial Neural Networks (ANNs) are widely used as functionapproximators in diverse fields of geoinformatics including velocity fielddetermination. Deciding the number of hidden neurons required for theimplementation of an arbitrary function is one of the major problems of ANN thatstill deserves further exploration. Generally, the number of hidden neurons isdecided on the basis of experience. This paper attempts to quantify the significanceof pruning away hidden neurons in ANN architecture for velocity fielddetermination. An initial back propagation artificial neural network (BPANN) with30 hidden neurons is educated by training data and resultant BPANN is applied ontest and validation data. The number of hidden neurons is subsequently decreased,in pairs from 30 to 2, to achieve the best predicting model. These pruned BPANNsare retrained and applied on the test and validation data. Some existing methods forselecting the number of hidden neurons are also used. The results are evaluated interms of the root mean square error (RMSE) over a study area for optimizing thenumber of hidden neurons in estimating densification point velocity by BPANN.
publishDate 2013
dc.date.none.fl_str_mv 2013-12-20
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufpr.br/bcg/article/view/34873
url https://revistas.ufpr.br/bcg/article/view/34873
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistas.ufpr.br/bcg/article/view/34873/21641
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Boletim de Ciências Geodésicas
Bulletin of Geodetic Sciences
publisher.none.fl_str_mv Boletim de Ciências Geodésicas
Bulletin of Geodetic Sciences
dc.source.none.fl_str_mv Boletim de Ciências Geodésicas; Vol 19, No 4 (2013)
Bulletin of Geodetic Sciences; Vol 19, No 4 (2013)
1982-2170
1413-4853
reponame:Boletim de Ciências Geodésicas
instname:Universidade Federal do Paraná (UFPR)
instacron:UFPR
instname_str Universidade Federal do Paraná (UFPR)
instacron_str UFPR
institution UFPR
reponame_str Boletim de Ciências Geodésicas
collection Boletim de Ciências Geodésicas
repository.name.fl_str_mv Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)
repository.mail.fl_str_mv qdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br
_version_ 1799771717651922944