INTEGRAÇÃO DE IMAGEM AÉREA DE ALTA RESOLUÇÃO E DADOS DE VARREDURA A LASER NA CLASSIFICAÇÃO DE CENAS URBANAS PARA DETECTAR REGIÕES DE VIA
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Boletim de Ciências Geodésicas |
Texto Completo: | https://revistas.ufpr.br/bcg/article/view/32491 |
Resumo: | O problema de extração automática da malha viária urbana é extremamente complexo, uma vez que em cenas urbanas as vias apresentam forte interação com os outros objetos da cena (vegetação, edificações, veículos etc.). Esse problema pode ser simplificado se regiões correspondente às vias forem previamente isoladas. Na sequência, a malha viária urbana pode ser extraída baseando-se apenas nessas regiões, reduzindo a área de busca e o esforço computacional. A classificação de imagens pode ser usada no intuito de isolar as regiões de via, mas em cenas urbanas complexas a utilização de somente dados espectrais pode não ser suficiente para separar com confiabilidade classes com comportamento espectral similar. Para contornar esse problema, é proposta a integração dos dados geométricos e radiométricos de varredura a laser com imagem aérea RGB de alta resolução numa classificação por Redes Neurais Artificiais, tendo por foco principal o isolamento de regiões de via. O benefício desta integração foi verificado usando diferentes combinações de dados de entrada na rede. Os experimentos mostraram que a combinação que integra diferentes fontes de dados permitiu separar a classe via com melhor acurácia e que problemas relacionados com as respostas espectrais similares foram minimizados. |
id |
UFPR-2_e8df281f27f8ae5d91bef4a50b3d60c3 |
---|---|
oai_identifier_str |
oai:revistas.ufpr.br:article/32491 |
network_acronym_str |
UFPR-2 |
network_name_str |
Boletim de Ciências Geodésicas |
repository_id_str |
|
spelling |
INTEGRAÇÃO DE IMAGEM AÉREA DE ALTA RESOLUÇÃO E DADOS DE VARREDURA A LASER NA CLASSIFICAÇÃO DE CENAS URBANAS PARA DETECTAR REGIÕES DE VIAGeociências; GeodésiaRedes Neurais Artificiais; Modelo Digital de Superfície Normalizado; Imagem de Intensidade do Pulso Laser.O problema de extração automática da malha viária urbana é extremamente complexo, uma vez que em cenas urbanas as vias apresentam forte interação com os outros objetos da cena (vegetação, edificações, veículos etc.). Esse problema pode ser simplificado se regiões correspondente às vias forem previamente isoladas. Na sequência, a malha viária urbana pode ser extraída baseando-se apenas nessas regiões, reduzindo a área de busca e o esforço computacional. A classificação de imagens pode ser usada no intuito de isolar as regiões de via, mas em cenas urbanas complexas a utilização de somente dados espectrais pode não ser suficiente para separar com confiabilidade classes com comportamento espectral similar. Para contornar esse problema, é proposta a integração dos dados geométricos e radiométricos de varredura a laser com imagem aérea RGB de alta resolução numa classificação por Redes Neurais Artificiais, tendo por foco principal o isolamento de regiões de via. O benefício desta integração foi verificado usando diferentes combinações de dados de entrada na rede. Os experimentos mostraram que a combinação que integra diferentes fontes de dados permitiu separar a classe via com melhor acurácia e que problemas relacionados com as respostas espectrais similares foram minimizados.Boletim de Ciências GeodésicasBulletin of Geodetic SciencesCNPqMENDES, TATIANA SUSSEL GONÇALVESDAL POZ, ALUIR PORFÍRIO2013-06-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufpr.br/bcg/article/view/32491Boletim de Ciências Geodésicas; Vol 19, No 2 (2013)Bulletin of Geodetic Sciences; Vol 19, No 2 (2013)1982-21701413-4853reponame:Boletim de Ciências Geodésicasinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRporhttps://revistas.ufpr.br/bcg/article/view/32491/20606info:eu-repo/semantics/openAccess2013-06-24T15:47:12Zoai:revistas.ufpr.br:article/32491Revistahttps://revistas.ufpr.br/bcgPUBhttps://revistas.ufpr.br/bcg/oaiqdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br1982-21701413-4853opendoar:2013-06-24T15:47:12Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)false |
dc.title.none.fl_str_mv |
INTEGRAÇÃO DE IMAGEM AÉREA DE ALTA RESOLUÇÃO E DADOS DE VARREDURA A LASER NA CLASSIFICAÇÃO DE CENAS URBANAS PARA DETECTAR REGIÕES DE VIA |
title |
INTEGRAÇÃO DE IMAGEM AÉREA DE ALTA RESOLUÇÃO E DADOS DE VARREDURA A LASER NA CLASSIFICAÇÃO DE CENAS URBANAS PARA DETECTAR REGIÕES DE VIA |
spellingShingle |
INTEGRAÇÃO DE IMAGEM AÉREA DE ALTA RESOLUÇÃO E DADOS DE VARREDURA A LASER NA CLASSIFICAÇÃO DE CENAS URBANAS PARA DETECTAR REGIÕES DE VIA MENDES, TATIANA SUSSEL GONÇALVES Geociências; Geodésia Redes Neurais Artificiais; Modelo Digital de Superfície Normalizado; Imagem de Intensidade do Pulso Laser. |
title_short |
INTEGRAÇÃO DE IMAGEM AÉREA DE ALTA RESOLUÇÃO E DADOS DE VARREDURA A LASER NA CLASSIFICAÇÃO DE CENAS URBANAS PARA DETECTAR REGIÕES DE VIA |
title_full |
INTEGRAÇÃO DE IMAGEM AÉREA DE ALTA RESOLUÇÃO E DADOS DE VARREDURA A LASER NA CLASSIFICAÇÃO DE CENAS URBANAS PARA DETECTAR REGIÕES DE VIA |
title_fullStr |
INTEGRAÇÃO DE IMAGEM AÉREA DE ALTA RESOLUÇÃO E DADOS DE VARREDURA A LASER NA CLASSIFICAÇÃO DE CENAS URBANAS PARA DETECTAR REGIÕES DE VIA |
title_full_unstemmed |
INTEGRAÇÃO DE IMAGEM AÉREA DE ALTA RESOLUÇÃO E DADOS DE VARREDURA A LASER NA CLASSIFICAÇÃO DE CENAS URBANAS PARA DETECTAR REGIÕES DE VIA |
title_sort |
INTEGRAÇÃO DE IMAGEM AÉREA DE ALTA RESOLUÇÃO E DADOS DE VARREDURA A LASER NA CLASSIFICAÇÃO DE CENAS URBANAS PARA DETECTAR REGIÕES DE VIA |
author |
MENDES, TATIANA SUSSEL GONÇALVES |
author_facet |
MENDES, TATIANA SUSSEL GONÇALVES DAL POZ, ALUIR PORFÍRIO |
author_role |
author |
author2 |
DAL POZ, ALUIR PORFÍRIO |
author2_role |
author |
dc.contributor.none.fl_str_mv |
CNPq |
dc.contributor.author.fl_str_mv |
MENDES, TATIANA SUSSEL GONÇALVES DAL POZ, ALUIR PORFÍRIO |
dc.subject.por.fl_str_mv |
Geociências; Geodésia Redes Neurais Artificiais; Modelo Digital de Superfície Normalizado; Imagem de Intensidade do Pulso Laser. |
topic |
Geociências; Geodésia Redes Neurais Artificiais; Modelo Digital de Superfície Normalizado; Imagem de Intensidade do Pulso Laser. |
description |
O problema de extração automática da malha viária urbana é extremamente complexo, uma vez que em cenas urbanas as vias apresentam forte interação com os outros objetos da cena (vegetação, edificações, veículos etc.). Esse problema pode ser simplificado se regiões correspondente às vias forem previamente isoladas. Na sequência, a malha viária urbana pode ser extraída baseando-se apenas nessas regiões, reduzindo a área de busca e o esforço computacional. A classificação de imagens pode ser usada no intuito de isolar as regiões de via, mas em cenas urbanas complexas a utilização de somente dados espectrais pode não ser suficiente para separar com confiabilidade classes com comportamento espectral similar. Para contornar esse problema, é proposta a integração dos dados geométricos e radiométricos de varredura a laser com imagem aérea RGB de alta resolução numa classificação por Redes Neurais Artificiais, tendo por foco principal o isolamento de regiões de via. O benefício desta integração foi verificado usando diferentes combinações de dados de entrada na rede. Os experimentos mostraram que a combinação que integra diferentes fontes de dados permitiu separar a classe via com melhor acurácia e que problemas relacionados com as respostas espectrais similares foram minimizados. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-06-30 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufpr.br/bcg/article/view/32491 |
url |
https://revistas.ufpr.br/bcg/article/view/32491 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.ufpr.br/bcg/article/view/32491/20606 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Boletim de Ciências Geodésicas Bulletin of Geodetic Sciences |
publisher.none.fl_str_mv |
Boletim de Ciências Geodésicas Bulletin of Geodetic Sciences |
dc.source.none.fl_str_mv |
Boletim de Ciências Geodésicas; Vol 19, No 2 (2013) Bulletin of Geodetic Sciences; Vol 19, No 2 (2013) 1982-2170 1413-4853 reponame:Boletim de Ciências Geodésicas instname:Universidade Federal do Paraná (UFPR) instacron:UFPR |
instname_str |
Universidade Federal do Paraná (UFPR) |
instacron_str |
UFPR |
institution |
UFPR |
reponame_str |
Boletim de Ciências Geodésicas |
collection |
Boletim de Ciências Geodésicas |
repository.name.fl_str_mv |
Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR) |
repository.mail.fl_str_mv |
qdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br |
_version_ |
1799771718827376640 |