Métodos iterativos híbridos para resolução sistemas lineares

Detalhes bibliográficos
Autor(a) principal: Silveira, Adilson da
Data de Publicação: 2003
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPR
Texto Completo: https://hdl.handle.net/1884/78538
Resumo: Orientador: Prof. Dr. Luis Carlos Matioli
id UFPR_08f98830c32f1fb7a75ceb8354b9a17c
oai_identifier_str oai:acervodigital.ufpr.br:1884/78538
network_acronym_str UFPR
network_name_str Repositório Institucional da UFPR
repository_id_str 308
spelling Universidade Federal do Paraná. Setor de Tecnologia. Programa de Pós-Graduação em Métodos Numéricos em EngenhariaMatioli, Luiz Carlos, 1961-Silveira, Adilson da2024-05-16T14:36:45Z2024-05-16T14:36:45Z2003https://hdl.handle.net/1884/78538Orientador: Prof. Dr. Luis Carlos MatioliDissertação (mestrado) - Universidade Federal do Paraná, Setor de Tecnologia, Curso de Pós-Graduação em Métodos Numéricos em EngenhariaInclui referências: p. 77-78Área de concentração: Programação MatemáticaResumo: O objetivo deste trabalho será apresentar métodos iterativos híbridos para resolver sistemas de equações lineares Ax = b, x, b E Rn. Para isso apresentaremos alguns conceitos inciais de álgebra linear, descreveremos o método de eliminação de Gauss e os métodos iterativos de Jacobi, Gauss-Seidel e SOR. Em seguida proporemos métodos iterativos híbridos que são baseados em combinar uma iteração do método de eliminação de Gauss com os iterativos de Jacobi, Gauss-Seidel e SOR. Tanto os algoritmos iterativos clássicos quanto os híbridos foram implementados em Matlab e analisados numericamente a partir de testes com matrizes dadas em The Matrix Computational Toolbox for Matlab [8]. Apresentaremos na parte final, conclusões sobre os resultados numéricos dos algoritmos referentes aos métodos propostos comparativamente aos métodos tradicionais, com indicações para estudos futuros relacionados a este trabalho.Abstract: In this work we presented hibrid iterative methods for solving linear svstems Ax = b, x, b E Rn . For that we will present some initial concepts of linear algebra, we will describe the Gauss elimination method and iterative methods of Jacobi, Gauss-Seidel and SOR. Further we propose hibrids iterative methods that consist in to combine an iteration of the Gauss elimination method with classic iteratives methods of Jacobi. Gauss-Seidel and SOR. As classical iteratives algorithms and the hibrids are coded in Matlab and then numericaly analised to start of test with matrices given in The Matrix Computational Toolbox for Matlab [8]. In the last part we present conclusions about the numerical results to algorithms concerning to propose methods comparatively of the traditional ones, with indication for future studys related to this work.iv, 78 f. : il., tabs.application/pdfDisponível em formato digitalÁlgebra linearTeoria da bifurcaçãoMetodos interativos (Matematica)Análise NuméricaMétodos iterativos híbridos para resolução sistemas linearesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da UFPRinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRinfo:eu-repo/semantics/openAccessORIGINALD - D - ADILSON DA SILVEIRA.pdfapplication/pdf2450831https://acervodigital.ufpr.br/bitstream/1884/78538/1/D%20-%20D%20-%20ADILSON%20DA%20SILVEIRA.pdfb408472a82215f0ab7f2f9a2341e499bMD51open access1884/785382024-05-16 11:36:45.606open accessoai:acervodigital.ufpr.br:1884/78538Repositório de PublicaçõesPUBhttp://acervodigital.ufpr.br/oai/requestopendoar:3082024-05-16T14:36:45Repositório Institucional da UFPR - Universidade Federal do Paraná (UFPR)false
dc.title.pt_BR.fl_str_mv Métodos iterativos híbridos para resolução sistemas lineares
title Métodos iterativos híbridos para resolução sistemas lineares
spellingShingle Métodos iterativos híbridos para resolução sistemas lineares
Silveira, Adilson da
Álgebra linear
Teoria da bifurcação
Metodos interativos (Matematica)
Análise Numérica
title_short Métodos iterativos híbridos para resolução sistemas lineares
title_full Métodos iterativos híbridos para resolução sistemas lineares
title_fullStr Métodos iterativos híbridos para resolução sistemas lineares
title_full_unstemmed Métodos iterativos híbridos para resolução sistemas lineares
title_sort Métodos iterativos híbridos para resolução sistemas lineares
author Silveira, Adilson da
author_facet Silveira, Adilson da
author_role author
dc.contributor.other.pt_BR.fl_str_mv Universidade Federal do Paraná. Setor de Tecnologia. Programa de Pós-Graduação em Métodos Numéricos em Engenharia
dc.contributor.advisor1.fl_str_mv Matioli, Luiz Carlos, 1961-
dc.contributor.author.fl_str_mv Silveira, Adilson da
contributor_str_mv Matioli, Luiz Carlos, 1961-
dc.subject.por.fl_str_mv Álgebra linear
Teoria da bifurcação
Metodos interativos (Matematica)
Análise Numérica
topic Álgebra linear
Teoria da bifurcação
Metodos interativos (Matematica)
Análise Numérica
description Orientador: Prof. Dr. Luis Carlos Matioli
publishDate 2003
dc.date.issued.fl_str_mv 2003
dc.date.accessioned.fl_str_mv 2024-05-16T14:36:45Z
dc.date.available.fl_str_mv 2024-05-16T14:36:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1884/78538
url https://hdl.handle.net/1884/78538
dc.language.iso.fl_str_mv por
language por
dc.relation.pt_BR.fl_str_mv Disponível em formato digital
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv iv, 78 f. : il., tabs.
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPR
instname:Universidade Federal do Paraná (UFPR)
instacron:UFPR
instname_str Universidade Federal do Paraná (UFPR)
instacron_str UFPR
institution UFPR
reponame_str Repositório Institucional da UFPR
collection Repositório Institucional da UFPR
bitstream.url.fl_str_mv https://acervodigital.ufpr.br/bitstream/1884/78538/1/D%20-%20D%20-%20ADILSON%20DA%20SILVEIRA.pdf
bitstream.checksum.fl_str_mv b408472a82215f0ab7f2f9a2341e499b
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFPR - Universidade Federal do Paraná (UFPR)
repository.mail.fl_str_mv
_version_ 1813898731683053568